Complex Analysis and the Cauchy Problem for Convolution Operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 165-168

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space of entire functions, a homogeneous convolution equation is considered, and conditions for the existence of solutions to this equation with given values at integer points are found.
@article{TM_2001_235_a11,
     author = {V. V. Napalkov},
     title = {Complex {Analysis} and the {Cauchy} {Problem} for {Convolution} {Operators}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {165--168},
     publisher = {mathdoc},
     volume = {235},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a11/}
}
TY  - JOUR
AU  - V. V. Napalkov
TI  - Complex Analysis and the Cauchy Problem for Convolution Operators
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 165
EP  - 168
VL  - 235
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_235_a11/
LA  - ru
ID  - TM_2001_235_a11
ER  - 
%0 Journal Article
%A V. V. Napalkov
%T Complex Analysis and the Cauchy Problem for Convolution Operators
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 165-168
%V 235
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_235_a11/
%G ru
%F TM_2001_235_a11
V. V. Napalkov. Complex Analysis and the Cauchy Problem for Convolution Operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 165-168. http://geodesic.mathdoc.fr/item/TM_2001_235_a11/