Complex Analysis and the Cauchy Problem for Convolution Operators
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 165-168
Voir la notice de l'article provenant de la source Math-Net.Ru
In the space of entire functions, a homogeneous convolution equation is considered, and conditions for the existence of solutions to this equation with given values at integer points are found.
@article{TM_2001_235_a11,
author = {V. V. Napalkov},
title = {Complex {Analysis} and the {Cauchy} {Problem} for {Convolution} {Operators}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {165--168},
publisher = {mathdoc},
volume = {235},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_235_a11/}
}
V. V. Napalkov. Complex Analysis and the Cauchy Problem for Convolution Operators. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Analytic and geometric issues of complex analysis, Tome 235 (2001), pp. 165-168. http://geodesic.mathdoc.fr/item/TM_2001_235_a11/