Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2001_234_a0, author = {E. Mitidieri and S. I. Pokhozhaev}, title = {A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {3--383}, publisher = {mathdoc}, volume = {234}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2001_234_a0/} }
TY - JOUR AU - E. Mitidieri AU - S. I. Pokhozhaev TI - A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 3 EP - 383 VL - 234 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_234_a0/ LA - ru ID - TM_2001_234_a0 ER -
%0 Journal Article %A E. Mitidieri %A S. I. Pokhozhaev %T A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2001 %P 3-383 %V 234 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2001_234_a0/ %G ru %F TM_2001_234_a0
E. Mitidieri; S. I. Pokhozhaev. A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Tome 234 (2001), pp. 3-383. http://geodesic.mathdoc.fr/item/TM_2001_234_a0/
[1] Aguirre J., Escobedo M., “On the blow-up of solutions of a convective reaction diffusion equation”, Proc. Roy. Soc. Edinburgh A, 123 (1993), 433–460 | MR | Zbl
[2] Alinhac S., Blow-up for nonlinear hyperbolic equations, Progr. Nonlin. Diff. Equat. and Appl., 17, Birkhäuser, Boston etc., 1995 | MR | Zbl
[3] Amann H., Fila M., “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition”, Acta Math. Univ. Comenian, 66 (1997), 321–328 | MR | Zbl
[4] Asakura F., “Existence of a global solution to a semilinear wave equation with slowly decreasing initial data”, Commun. Part. Diff. Equat., 11 (1986), 1459–1484 | DOI | MR
[5] Bahouri H., Shatah J., “Decay estimates for the critical semilinear wave equation”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 15 (1998), 783–789 | DOI | MR | Zbl
[6] Bandle C., “Positive solutions of Emden equations in cone-like domains”, Nonlinear diffusion equations and their equilibrium states, 3, Progr. Nonlin. Diff. Equat. and Appl., 7, eds. N. G. Lloyd, W.-M. Ni, L. A. Peletier, J. Serrin, Birkhäuser, Boston etc., 1992, 71–75 | MR
[7] Bandle C., Bruner B., “Blow-up in diffusion equations: A survey”, J. Comput. Appl. Math., 97 (1998), 3–22 | DOI | MR | Zbl
[8] Bandle C., Essen M., “On positive solutions of Emden equations in cone-like domains”, Arch. Ration. Mech. and Anal., 112 (1990), 319–338 | DOI | MR | Zbl
[9] Bandle C., Levine H. A., Zhang Q. S., “Critical exponents of Fujita type for inhomogeneous parabolic equations and systems”, J. Math. Anal. and Appl., 251 (2000), 624–648 | DOI | MR | Zbl
[10] Bebernes J., “Blowup — when, where, and how?”, Bull. Soc. Math. Belg. A., 40 (1988), 3–45 | MR | Zbl
[11] Bebernes J., Bressan A., Galaktionov V. A., “On symmetric and nonsymmetric blowup for a weakly quasilinear heat equation”, Nonlin. Diff. Equat. and Appl., 3 (1996), 269–286 | DOI | MR | Zbl
[12] Bebernes J., Bricher S., Galaktionov V. A., “Asymptotics of blowup for weakly quasilinear parabolic problems”, Nonlin. Anal., 23 (1994), 489–514 | DOI | MR | Zbl
[13] Bebernes J., Eberly D., “Characterization of blow-up for a semilinear heat equation with a convection term”, Quart. J. Mech. and Appl. Math., 42 (1989), 447–456 | DOI | MR | Zbl
[14] Bebernes J., Galaktionov V. A., “On classification of blow-up patterns for a quasilinear heat equations”, Diff. Integr. Equat., 9 (1996), 655–670 | MR | Zbl
[15] Bebernes J., Lacey A., “Finite-time blowup for a particular parabolic system”, SIAM J. Math. Anal., 21 (1990), 1415–1425 | DOI | MR | Zbl
[16] Bebernes J., Lacey A., “Finite time blowup for semilinear reactive-diffusive systems”, J. Diff. Equat., 95 (1992), 105–129 | DOI | MR | Zbl
[17] Bebernes J., Lacey A. A., “Global existence and finite-time blow-up for a class of nonlocal parabolic problems”, Adv. Diff. Equat., 2 (1997), 927–953 | MR | Zbl
[18] Bebernes J., Li C., Talaga P., “Single-point blowup for nonlocal parabolic problems”, Physika D., 134 (1999), 48–60 | DOI | MR | Zbl
[19] Belchev E., Kepka M., Zhou Z., “Global existence of solutions to semilinear wave equations”, Commun. Part. Diff. Equat., 24 (1999), 2297–2331 | MR | Zbl
[20] Benguria R., Lorca S., Yarur C., “Nonexistence of positive solutions of semilinear elliptic equations”, Duke Math. J., 74 (1994), 615–634 | DOI | MR | Zbl
[21] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., “Problèmes elliptiques indéfinis et théorèmes de Liouville non-linéaires”, C. R. Acad. Sci. Paris. Sér. 1, 317 (1993), 945–950 | MR | Zbl
[22] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., “Superlinear indefinite elliptic problems and nonlinear Liouville theorems”, Top. Meth. Nonlin. Anal., 4 (1995), 59–78 | MR
[23] Bernstein S. N., “Sur un théoréme de géometric et son application aux équations aux derivées partielles du type elliptique”, Commun. Soc. Math. Kharkov. Ser. 2, 15 (1915–1917), 38–45 | Zbl
[24] Bidaut-Veron M.-F., “Local and global behavior of solutions of quasilinear equations of Emden–Fowler type”, Arch. Ration. Mech. and Anal., 107 (1989), 293–324 | DOI | MR | Zbl
[25] Bidaut-Veron M.-F., Grillot P., “Asymptotic behaviour of elliptic system with mixed absorption and source terms”, Asymp. Anal., 19 (1999), 117–147 | MR | Zbl
[26] Bidaut-Veron M.-F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 2001 (to appear) | MR
[27] Bidaut-Veron M.-F., Raoux T., “Asymptotics of solutions of some nonlinear elliptic systems”, Commun. Part. Diff. Equat., 21 (1996), 1035–1086 | DOI | MR | Zbl
[28] Bidaut-Veron M.-F., Veron L., “Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations”, Invent. Math., 106 (1991), 489–539 | DOI | MR | Zbl
[29] Birindelli I., Capuzzo Dolcetta I., Cutri A., “Liouville theorems for semilinear equations on the Heisenberg group”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 14 (1997), 295–308 | DOI | MR | Zbl
[30] Birindelli I., Mitidieri E., “Liouville theorems for elliptic inequalities and applications”, Proc. Roy. Soc. Edinburgh A., 128 (1998), 1217–1247 | MR | Zbl
[31] Bressan A., “Stable blow-up patterns”, J. Diff. Equat., 98 (1992), 57–75 | DOI | MR | Zbl
[32] Brezis H., Cabré X., “Some simple nonlinear PDE's without solutions”, Boll. Un. Mat. Ital. B., 8 (1998), 223–262 | MR | Zbl
[33] Budd C., Cliffe K. A., Dux F., “The effect of frequency and clearance variations on a single degree of freedom impact oscillator”, J. Sound Vibration, 184 (1995), 475–502 | DOI | Zbl
[34] Budd C., Collins G., Galaktionov V., “An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations”, J. Comput. Appl. Math., 97 (1998), 51–80 | DOI | MR | Zbl
[35] Budd C., Galaktionov V., “Stability and spectra of blow-up in problems with quasi-linear gradient diffusivity”, Proc. Roy. Soc. London A., 454 (1998), 2371–2407 | DOI | MR | Zbl
[36] Budd C., Galaktionov V., Chen J., “Focusing blow-up for quasilinear parabolic equations”, Proc. Roy. Soc. Edinburgh A, 128 (1998), 965–992 | MR | Zbl
[37] Budd C., Harris C., Vickers J., “Dynamic models for the competition between two companies seeking a monopoly”, Rev. Econom. Stud., 60 (1993), 543–573 | DOI | Zbl
[38] Budd C., Koomullil G., Stuart A., “On the solution of convection-diffusion boundary-value problems using equidistributed grids”, SIAM J. Sci. Comput., 20 (1998), 591–618 | DOI | MR
[39] Caristi G., “Existence and nonexistence of global solutions of degenerate and singular parabolic systems”, Abstr. Appl. Anal. (to appear) | MR
[40] Caristi G., “Some nonexistence theorems for systems of quasilinear elliptic inequalities”, Russ. J. Math. Phys. (to appear)
[41] Caristi G., Mitidieri E., “Blow-up estimates of positive solutions of a parabolic system”, J. Diff. Equat., 113 (1994), 265–271 | DOI | MR | Zbl
[42] Caristi G., Mitidieri E., “Nonexistence of positive solutions of quasilinear equations”, Adv. Diff. Equat., 2 (1997), 319–359 | MR | Zbl
[43] Choquet-Bruhat Y., “Global existence for solutions of $\Box u=A|u|^p$”, J. Diff. Equat., 92 (1989), 98–108 | DOI | MR
[44] Christodoulou D., “Global solutions of nonlinear hyperbolic equations for small initial data”, Commun. Pure and Appl. Math., 39 (1986), 267–282 | DOI | MR | Zbl
[45] Clément Ph., de Figueiredo D., Mitidieri E., “Quasilinear elliptic equations with critical exponents”, Top. Meth. Nonlin. Anal., 7 (1996), 133–170 | MR | Zbl
[46] Clément Ph., Fleckinger J., Mitidieri E., de Thelin F., “Existence of positive solutions for a nonvariational elliptic system”, J. Diff. Equat., 166:2 (2000), 455–477 | DOI | MR | Zbl
[47] Clément Ph., Manásevich R., Mitidieri E., “Positive solutions for a quasilinear system via blow-up”, Commun. Part. Diff. Equat., 18 (1993), 2071–2106 | DOI | MR | Zbl
[48] Clément Ph., Manásevich R., Mitidieri E., “On a modified capillary equation”, J. Diff. Equat., 124:2 (1996), 343–358 | DOI | MR | Zbl
[49] Clément Ph., Manásevich R., Mitidieri E., “Some existence and non-existence results for a homogeneous quasilinear problem”, Asymp. Anal., 17 (1998), 13–29 | MR | Zbl
[50] Constantin A., Escher J., “Well-posedness, global existence and blowup phenomena for a periodic quasilinear hyperbolic equation”, Commun. Pure and Appl. Math., L1:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[51] Datti P., “Nonlinear wave equations in exterior domains”, Nonlin. Anal., 15 (1990), 321–331 | DOI | MR | Zbl
[52] Del Santo D., “Global existence and blow-up for a hyperbolic system in three space dimensions”, Rend. Ist. Mat. Univ. Trieste, 29 (1997), 167–188 | MR
[53] Del Santo D., Georgiev V., Mitidieri E., “Global existence of the solutions and formation of singularities for a class of hyperbolic systems”, Geometrical optics and related topics, Progr. Nonlin. Diff. Equat. and Appl., 32, eds. F. Colombini, N. Lerner, Birkhäuser, Boston etc., 1997, 117–140 | MR
[54] Deng K., Fila M., Levine H. A., “On critical exponents for a system of heat equations coupled in the boundary conditions”, Acta Math. Univ. Comenian, 63 (1994), 169–192 | MR | Zbl
[55] Deng K., Levine H. A., “The role of critical exponent in blow-up theorem: the sequel”, J. Math. Anal. and Appl., 243 (2000), 85–126 | DOI | MR | Zbl
[56] Di Benedetto E., Degenerate parabolic equations, Springer, N.Y. etc., 1993 | MR | Zbl
[57] Egnell H., “Positive solutions of semilinear equations in cones”, Trans. Amer. Math. Soc., 330:1 (1992), 191–201 | DOI | MR | Zbl
[58] Egorov Y. V., Galaktionov V. A., Kondratiev V. A., Pohozaev S. I., “On the necessary condictions of global existence of solutions to a quasilinear inequality in the half-space”, C. R. Acad. Sci. Paris. Sér. 1, 330 (2000), 93–98 | MR | Zbl
[59] Escobedo M., Herrero M. A., “Boundedness and blow up for a semilinear reaction-diffusion system”, J. Diff. Equat., 89 (1991), 176–202 | DOI | MR | Zbl
[60] Escobedo M., Levine H. A., “Explosion et existence globale pour un système faiblement couplé d'équations de réaction diffusion”, C. R. Acad. Sci. Paris. Sér. 1, 314 (1992), 735–739 | MR | Zbl
[61] Escobedo M., Levine H. A., “Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations”, Arch. Ration. Mech. and Anal., 129 (1995), 47–100 | DOI | MR | Zbl
[62] Felmer P., de Figueiredo D. G., “Superquadratic elliptic systems”, Trans. Amer. Math. Soc., 343 (1994), 99–116 | DOI | MR | Zbl
[63] de Figueiredo D., “Semilinear elliptic systems”, Nonlinear functional analysis and applications to differential equations (Italy, 21 Apr.–9 May 1997), ICTP Trieste, World Sci., Singapore, 1998, 122–152 | MR | Zbl
[64] Fila M., Levine H. A., “On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition”, J. Math. Anal. and Appl., 204 (1996), 494–521 | DOI | MR | Zbl
[65] Fila M., Levine H. A., Uda Y., “A Fujita-type global existence – global non-existence theorem for a system of reaction diffusion equations with differing diffusitivies”, Math. Meth. Appl. Sci., 17 (1994), 807–835 | DOI | MR | Zbl
[66] Filippucci R., Pucci P., “Nonexistence and other properties for solutions of quasilinear elliptic equations”, Diff. Integr. Equat., 8 (1995), 525–538 | MR | Zbl
[67] Friedman A., Giga Y., “A single point blow-up for solutions of semilinear parabolic systems”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 34 (1987), 65–79 | MR | Zbl
[68] Fujita H., “On the blowing up of solutions of the Cauchy problems for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 13 (1966), 109–124 | MR | Zbl
[69] Furusho Y., Kusano T., Ogata A., “Symmetric positive entire solutions of second-order quasilinear degenerate elliptic equations”, Arch. Ration. Mech. and Anal., 127 (1994), 231–254 | DOI | MR | Zbl
[70] Galakhov E., “Some nonexistence results for quasilinear elliptic problems”, J. Math. Anal. and Appl., 252 (2000), 256–277 | DOI | MR | Zbl
[71] Galaktionov V. A., “On new exact blow-up solutions for nonlinear heat conduction equations with source and applications”, Diff. Integr. Equat., 3 (1990), 863–874 | MR | Zbl
[72] Galaktionov V. A., Hulshof J., Vazquez J. L., “Extinction and focusing behaviour of spherical and annular flames described by a free boundary problem”, J. Math. Pures et Appl., 76 (1997), 563–608 | MR | Zbl
[73] Galaktionov V. A., Peletier L. A., “Asymptotic behaviour near finite-time extincion for the fast diffusion equation”, Arch. Ration. Mech. and Anal., 139 (1997), 83–98 | DOI | MR | Zbl
[74] Galaktionov V. A., Pohozaev S. I., Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations, Preprint Univ. Bath. Math. 00/10, 2000
[75] Galaktionov V. A., Vazquez J. L., “Necessary and sufficient conditions of complete blow up and extinction for one-dimensional quasilinear heat equations”, Arch. Ration. Mech. and Anal., 129 (1996), 225–244 | DOI | MR
[76] Galaktionov V. A., Vazquez J. L., “Blow-up of a class of solutions with free boundaries for the Navier–Stokes equations”, Adv. Diff. Equat., 4 (1997), 291–321 | MR
[77] Galaktionov V. A., Vazquez J. L., “Continuation of blowup solutions of nonlinear heat equations in several space dimensions”, Commun. Pure and Appl. Math., 50 (1997), 1–67 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[78] Galaktionov V. A., Vazquez J. L., The problem of blow-up in nonlinear parabolic equations, Preprint Univ. Bath. Math. 00/04, 2000 | MR
[79] Garofalo N., Lanconelli E., “Existence and nonexistence results for semilinear equations on the Heisenberg group”, Indiana Univ. Math. J., 41 (1992), 71–97 | DOI | MR
[80] Gazzola F., Grunau H.-C., Mitidieri E., Hardy inequalities with optimal constants and remainder terms, Preprint Univ. Roma 3, 2000 | MR
[81] Georgiev V., “Une estimation avec poids pour l'équation des ondes”, C. R. Acad. Sci. Paris. Sér. 1, 322 (1996), 829–834 | MR | Zbl
[82] Georgiev V., “Existence of global solutions to supercritical semilinear wave equations”, Serdica, 22 (1996), 125–164 | MR | Zbl
[83] Georgiev V., Lindblad H., Sogge C., “Weighted Strichartz estimate and global existence for semilinear wave equation”, Amer. J. Math., 119 (1997), 1291–1319 | DOI | MR | Zbl
[84] Georgiev V., Todorova G., “Global solution for three-dimensional weak viscosity”, C. R. Acad. Bulg. Sci., 47 (1994), 17–20 | MR | Zbl
[85] Giacomoni J., “Some results about blow-up and global existence to a semilinear degenerate heat equation”, Rev. Mat. Univ. Complut. Madrid, 11:2 (1998), 325–351 | MR | Zbl
[86] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Commun. Pure and Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl
[87] Gidas B., Spruck J., “A priori bounds for positive solutions of nonlinear elliptic equations”, Commun. Part. Diff. Equat., 6:8 (1981), 883–901 | DOI | MR | Zbl
[88] Giga Y., “A bound for global solutions of semilinear heat equations”, Commun. Math. Phys., 103 (1986), 414–421 | DOI | MR
[89] Giga Y., Kohn R. V., “Asymptotically self-similar blow-up of semilinear heat equations”, Commun. Pure and Appl. Math., 38 (1985), 297–319 | DOI | MR | Zbl
[90] Giga Y., Kohn R., “Characterizing blowup using similarity variables”, Indiana Univ. Math. J., 36 (1987), 1–40 | DOI | MR | Zbl
[91] Ginibre J., Soffer A., Velo G., “The global Cauchy problem for the critical non-linear wave equation”, J. Funct. Anal., 110 (1982), 96–130 | DOI | MR
[92] Ginibre J., Velo G., “The global Cauchy problem for the critical non linear Klein–Gordon equation”, Math. Ztschr., 189 (1985), 487–505 | DOI | MR | Zbl
[93] Ginibre J., Velo G., “Conformal invariance and time decay for nonlinear wave equation, I”, Ann. Inst. H. Poincaré. Phys. Théor., 47 (1987), 221–261 | MR | Zbl
[94] Ginibre J., Velo G., “Conformal invariance and time decay for nonlinear wave equation, II”, Ann. Inst. H. Poincaré. Phys. Théor., 47 (1987), 263–276 | MR | Zbl
[95] Ginibre J., Velo G., “Generalized Strichartz inequalities for the wave equation”, J. Funct. Anal., 133 (1995), 50–68 | DOI | MR | Zbl
[96] Giusti E., Minimal surfaces and functions of bounded variations, Birkhäuser, Basel etc., 1984 | MR | Zbl
[97] Glassey R., “Blow-up theorems for nonlinear wave equations”, Math. Ztschr., 132 (1973), 182–203 | DOI | MR
[98] Glassey R., “Existence in the large for $\Box u=F(u)$ in two space dimensions”, Math. Ztschr., 178 (1981), 233–261 | DOI | MR | Zbl
[99] Glassey R., “Finite time blow-up for solutions of nonlinear wave equations”, Math. Ztschr., 177 (1981), 323–340 | DOI | MR | Zbl
[100] Grillakis M., “Regularity for the wave equation with a critical nonlinearity”, Commun. Pure and Appl. Math., 45 (1992), 749–774 | DOI | MR | Zbl
[101] Hayakawa K., “On the nonexistence of global solutions of some semilinear parabolic equations”, Proc. Japan Acad., 49 (1973), 503–505 | DOI | MR | Zbl
[102] Hörmander L., Lectures on nonlinear hyperbolic differential equations, Math. and Appl., 26, Springer-Verl., Berlin etc., 1997 | MR
[103] Hoshiga A., “The lifespan of solutions to quasilinear hyperbolic systems in the critical case”, Funkcial. Ekvac., 41 (1998), 167–188 | MR | Zbl
[104] Hoshiga A., Kubo H., “Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition”, SIAM J. Math. Anal., 31 (2000), 486–513 | DOI | MR | Zbl
[105] John F., “Blow-up of solutions of nonlinear wave equation in three space dimensions”, Manuscr. Math., 28 (1979), 235–268 | DOI | MR | Zbl
[106] John F., “Blow-up for quasi-linear wave equations in three space dimensions”, Commun. Pure and Appl. Math., 34 (1981), 29–51 | DOI | MR | Zbl
[107] John F., “Existence for large times of strict solutions to nonlinear wave equations in three space dimensions for small data”, Commun. Pure and Appl. Math., 40 (1987), 79–109 | DOI | MR | Zbl
[108] John F., Nonlinear wave equations, formation of singularities, Univ. Lect. Ser., 2, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl
[109] John F., Klainerman S., “Almost global existence to nonlinear wave equations in three space dimensions”, Commun. Pure and Appl. Math., 37 (1984), 443–455 | DOI | MR | Zbl
[110] Kato T., “Blow-up of solutions of some nonlinear hyperbolic equations”, Commun. Pure and Appl. Math., 33 (1980), 501–505 | DOI | MR | Zbl
[111] Keel M., Tao T., “Small data blowup for semilinear Klein–Gordon equations”, Amer. J. Math., 121 (1999), 629–669 | DOI | MR | Zbl
[112] Keller J., “On solutions of nonlinear wave equations”, Commun. Pure and Appl. Math., 10 (1957), 523–530 | DOI | MR | Zbl
[113] Kondratev V. A., Eidelman S. D., “Positive solutions of quasilinear Emden–Fowler systems of arbitrary order”, Russ. J. Math. Phys., 2:4 (1994), 535–540 | MR
[114] Kondratev V. A., Eidelman S. D., “On the summability in $L^p$ of positive solutions of elliptic equations”, Russ. J. Math. Phys., 7:2 (2000), 206–215 | MR
[115] Kondratev V. A., Landis E. M., “Qualitative theory of second order linear partial differential equations”, Partial differential equations, 3, Encycl. Math. Sci., 32, eds. Yu. Egorov, M. Shubin, Springer-Verl., Berlin etc., 1991, 87–192
[116] Kon'kov A. A., “Behavior of solutions of nonlinear second-order elliptic inequalities”, Nonlin. Anal., 42:7 (2000), 1253–1270 | DOI | MR
[117] Kon'kov A. A., “On nonnegative solutions of quasilinear elliptic inequalities in domains belonging to $\mathbb{R}^2$”, Russ. J. Math. Phys., 7:4 (2000), 371–401 | MR
[118] Korman P., “On blow up of solutions of nonlinear evolution equations”, Proc. Amer. Math. Soc., 103:1 (1988), 189–197 | DOI | MR | Zbl
[119] Kuzin I., Pohozaev S., Entire solutions of semilinear elliptic equations, Birkhäuser, Boston etc., 1997 | MR | Zbl
[120] Levine H. A., “Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{tt}=-Au+{\mathcal F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl
[121] Levine H. A., “The role of critical exponents in blowup problems”, SIAM Rev., 32 (1990), 262–288 | DOI | MR | Zbl
[122] Levine H. A., “A Fujita type global existence — global nonexistence theorem for a weakly coupled system of reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 42 (1991), 408–430 | DOI | MR | Zbl
[123] Levine H. A., Lieberman G. M., Meier P., “On critical exponents for some quasilinear parabolic equations”, Math. Meth. Appl. Sci., 12 (1990), 429–438 | DOI | MR | Zbl
[124] Levine H. A., Park S. R., Serrin J., “Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation”, J. Math. Anal. and Appl., 228 (1998), 181–205 | DOI | MR | Zbl
[125] Levine H. A., Park S. R., Serrin J., “Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type”, J. Diff. Equat., 142 (1998), 212–229 | DOI | MR | Zbl
[126] Levine H. A., Payne L. E., “Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations”, J. Math. Anal. and Appl., 5 (1976), 329–334 | DOI | MR
[127] Levine H. A., Serrin J., “Global nonexistence theorems for quasilinear evolution equations with dissipation”, Arch. Ration. Mech. and Anal., 137 (1997), 341–361 | DOI | MR | Zbl
[128] Levine H. A., Sleeman B., “A system of reaction diffusion equations arising in the theory of reinforced random walks”, SIAM J. Math. Anal., 57 (1997), 683–730 | DOI | MR | Zbl
[129] Levine H. A., Sleeman B. D., Nilsen-Hamilton M., “A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis, I”, Math. Biosci., 168 (2000), 77–115 | DOI | MR | Zbl
[130] Levine H. A., Zhang Q. S., “The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values”, Proc. Roy. Soc. Edinburgh A, 130 (2000), 591–602 | MR | Zbl
[131] Li T., Yu X., “Lifespan of classical solutions to fully nonlinear wave equations”, Commun. Part. Diff. Equat., 16 (1991), 909–940 | DOI | MR | Zbl
[132] Li T., Zhou Y., “A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions”, Indiana Univ. Math. J., 44 (1995), 1207–1248 | MR | Zbl
[133] Li Yi, Santanilla J., “Existence and nonexistence of positive singular solutions for semilinear elliptic problems with applications in astrophysics”, Diff. Integr. Equat., 8 (1995), 1369–1383 | MR | Zbl
[134] Lindblad H., Sogge C., “On existence and scattering with minimal regularity for semilinear wave equations”, J. Funct. Anal., 130 (1995), 357–426 | DOI | MR | Zbl
[135] Merle F., Zaag H., “Optimal estimates for blowup rate and behaviour for nonlinear heat equations”, Commun. Pure and Appl. Math., 51 (1998), 139–196 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[136] Merle F., Zaag H., “Refined uniform estimates at blow-up and applications for nonlinear heat equations”, Geom. Funct. Anal., 8 (1998), 1043–1085 | DOI | MR | Zbl
[137] Merle F., Zaag H., “A Liouville theorem for vector-valued nonlinear heat equations and applications”, Math. Ann., 316 (2000), 103–137 | DOI | MR | Zbl
[138] Mitidieri E., “A Rellich type identity and applications”, Commun. Part. Diff. Equat., 18 (1993), 125–151 | DOI | MR | Zbl
[139] Mitidieri E., “Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb{R}^n$”, Diff. Integr. Equat., 9 (1996), 465–479 | MR | Zbl
[140] Mitidieri E., Sweers G., van der Vorst R., “Nonexistence theorems for systems of quasilinear partial differential equations”, Diff. Integr. Equat., 8 (1995), 1331–1354 | MR | Zbl
[141] Mochizuki K., Huang Q., “Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations”, Meth. Appl. Anal., 2 (1995), 109–124 | MR
[142] Mochizuki K., Suzuki R., “Critical exponent and critical blow up for quasi-linear parabolic equations”, Israel J. Math., 98 (1997), 141–156 | DOI | MR | Zbl
[143] Mustonen V., Pohozaev S. I., “On the nonexistence of periodic radial solutions for semilinear wave equations in unbounded domain”, Diff. Integr. Equat., 11:1 (1998), 133–145 | MR | Zbl
[144] Ni W.-M., “On a singular elliptic equation”, Proc. Amer. Math. Soc., 88 (1983), 614–616 | DOI | MR | Zbl
[145] Ni W.-M., Serrin J., “Non-existence theorems for quasilinear partial differential equations”, Rend. Circ. Mat. Palermo. Ser. 2. Suppl., 8 (1985), 171–185 | MR
[146] Ni W.-M., Serrin J., “Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case”, Atti Convegni Lincei, 77 (1986), 231–257
[147] Noussair E. Z., Swanson C., “Properties of potential systems in $\mathbb{R}^N$”, J. Diff. Equat., 95:1 (1992), 1–19 | DOI | MR | Zbl
[148] Ohta M., “Blow-up of solutions of dissipative nonlinear wave equations”, Hokkaido Math. J., 26 (1997), 115–124 | MR | Zbl
[149] Ohta M., “Remarks on blow-up of solutions for nonlinear evolution equations of second order”, Adv. Math. Sci. and Appl., 8 (1998), 901–910 | MR | Zbl
[150] Ono K., “Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings”, J. Diff. Equat., 137 (1997), 273–301 | DOI | MR | Zbl
[151] Pohozaev S. I., Tesei A., “Blow-up of nonnegative solutions to quasilinear parabolic inequalities”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Rend. Lincei. Ser. 9, 11 (2000), 99–109 | MR | Zbl
[152] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Springer-Verl., N.Y. etc., 1984 | MR | Zbl
[153] Pucci P., Serrin J., “Some new results on global nonexistence for abstract evolution with positive initial energy”, Top. Meth. Nonlin. Anal., 10:2 (1997), 241–247 | MR | Zbl
[154] Pucci P., Serrin J., “Global nonexistence for abstract evolution equations with positive initial energy”, J. Diff. Equat., 150:1 (1998), 203–214 | DOI | MR | Zbl
[155] Pucci P., Serrin J., Zou H., “A strong maximum principle and a compact support principle for singular elliptic inequalities”, Ric. Mat., 48 (1999), 373–398 | MR | Zbl
[156] Pucci P., Serrin J., Zou H., “A strong maximum principle and a compact support principle for singular elliptic inequalities”, J. Math. Pures et Appl., 78 (1999), 769–789 | DOI | MR | Zbl
[157] Pyke R. M., Sigal I. M., “Nonlinear wave equations: Constraints on periods and exponential bounds for periodic solutions”, Duke Math. J., 88:1 (1997), 133–180 | DOI | MR | Zbl
[158] Reichel W., Zou H., “Non-existence results for semilinear cooperative elliptic systems via moving spheres”, J. Diff. Equat., 161 (2000), 219–243 | DOI | MR | Zbl
[159] Schaeffer J., “The equation $u_{tt}-\Delta u=|u|^p$ for the critical value of $p$”, Proc. Roy. Soc. Edinburgh A, 101 (1985), 31–44 | MR | Zbl
[160] Serrin J., “Local behavior of solutions of quasilinear equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl
[161] Serrin J., “Isolated singularities of solutions of quasilinear equations”, Acta Math., 113 (1965), 219–241 | DOI | MR
[162] Serrin J., Positive solutions of prescribed mean curvature problem, Lect. Notes Math., 1340, Springer, N.Y. etc., 1998
[163] Serrin J., Zou H., “Nonexistence of positive solutions of Lane–Emden system”, Diff. Integr. Equat., 9 (1996), 635–653 | MR | Zbl
[164] Serrin J., Zou H., “Existence of positive solutions of the Lane–Emden system”, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 369–380 | MR | Zbl
[165] Serrin J., Zou H., “Symmetry of ground states of quasilinear elliptic equations”, Arch. Ration. Mech. and Anal., 148 (1999), 265–290 | DOI | MR | Zbl
[166] Sideris T. C., “Nonexistence of global solutions to semilinear wave equations in high dimensions”, J. Diff. Equat., 52 (1984), 378–406 | DOI | MR | Zbl
[167] Soranzo R., “Isolated singularities of positive solutions of a superlinear biharmonic equations”, Pot. Anal., 6 (1997), 57–85 | DOI | MR | Zbl
[168] Straugham B., Explosive instabilities in mechanics, Springer-Verl., Berlin etc., 1998 | MR
[169] Strauss W. A., “Nonlinear scattering theory”, Scattering theory in mathematical physics, D. Reidel, Dordrecht, 1979, 53–79
[170] Strauss W. A., “Nonlinear scattering at low energy”, J. Funct. Anal., 41 (1981), 110–133 | DOI | MR | Zbl
[171] Strauss W. A., Nonlinear wave equations, CBMS Reg. Conf. Ser. Math., 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl
[172] Strauss W., Nonlinear invariant wave equations, Lect. Notes Phys., 78, Springer-Verl., Berlin, 1978 | MR
[173] Struwe M., Wave maps, Progr. Nonlin. Diff. Equat. and Appl., 29, Birkhäuser, Boston etc., 1997 | MR | Zbl
[174] Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equation”, Commun. Pure and Appl. Math., 20 (1967), 721–744 | DOI | MR
[175] Tsutaya K., “Global existence and the life span of solutions of semilinear wave equations with data of noncompact support in three space dimensions”, Funkcial. Ekvac., 37 (1994), 1–18 | MR | Zbl
[176] Uda Y., “The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 46 (1995), 366–383 | DOI | MR | Zbl
[177] Vejvoda O., Herrmann L., Lovicar V., Partial differential equations: time-periodic solutions, Sijthoff Noordhoff, Maryland, Rockville, 1981
[178] Veron L., Pohozaev S. I., “Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group”, Manuscr. Math., 102 (2000), 85–99 | DOI | MR | Zbl
[179] Veron L., Pohozaev S. I., “Blow-up results for nonlinear hyperbolic inequalities”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 29:2 (2001), 393–420 | MR
[180] Weissler F. B., “An $L^\infty$ blow-up estimate for a nonlinear heat equation”, Commun. Pure and Appl. Math., 38 (1985), 291–295 | DOI | MR | Zbl
[181] Yarur C., “Nonexistence of positive singular solutions for a class of semilinear elliptic systems”, Electron. J. Diff. Equat., 8 (1996), 1–22 | MR
[182] Yukiyoshi E., Shuichi K., Levine H. A., “On solutions to $u_{tt}-|x|^\alpha\Delta u=f(u)$ ($\alpha>0$)”, Funkcial. Ekvac., 38 (1995), 539–544 | MR | Zbl
[183] Zaag H., “A Liouville theorem and blow-up behavior for vector valued nonlinear heat equation with no gradient structure”, Commun. Pure and Appl. Math., 54:1 (2001), 107–133 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[184] Zhang Q. S., “Blow-up results for nonlinear parabolic equations on manifolds”, Duke Math. J., 97 (1999), 515–539 | DOI | MR | Zbl
[185] Zou H., “Symmetry of ground states of semilinear elliptic equations with mixed Sobolev growth”, Indiana Univ. Math. J., 45 (1996), 221–240 | DOI | MR | Zbl
[186] Zou H., “On positive solutions for semilinear elliptic equations with an indefinite nonlinearity via bifurcation”, J. Part. Diff. Equat., 13 (2000), 133–150 | MR | Zbl
[187] Zou H., “Symmetry of ground states for a semilinear elliptic system”, Trans. Amer. Math. Soc., 352 (2000), 1217–1245 | DOI | MR | Zbl
[188] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR
[189] Galaktionov V. A., Egorov Yu. V., Kondratev V. A., Pokhozhaev S. I., “Ob usloviyakh suschestvovaniya reshenii kvazilineinogo neravenstva v poluprostranstve”, Mat. zametki, 67:1 (2000), 150–152. | MR | Zbl
[190] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl
[191] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR
[192] Guedda M., Kirane M., “Kritichnost dlya nekotorykh evolyutsionnykh uravnenii”, Dif. uravneniya, 2001 (to appear)
[193] Del Santo D., Mitidieri E., “Otsutstvie reshenii giperbolicheskoi sistemy: kriticheskii sluchai”, Dif. uravneniya, 34:9 (1998), 1157–1163 | MR | Zbl
[194] Ilyasov Ya. Sh., “O suschestvovanii konformno-ekvivalentnykh metrik dlya rimanovykh mnogoobrazii s kraem”, Dif. uravneniya, 35:1 (1999), 1–6 | MR
[195] Kiguradze I. T., Nachalnye i kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii, I, Metsniereba, Tbilisi, 1997 | MR | Zbl
[196] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl
[197] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292
[198] Kondratev V. A., “O resheniyakh slabo nelineinykh ellipticheskikh uravnenii v okrestnosti konicheskoi tochki granitsy”, Dif. uravneniya, 29:2 (1993), 298–305 | MR
[199] Kondratev V. A., Konkov A. A., “O svoistvakh reshenii odnogo klassa nelineinykh uravnenii vtorogo poryadka”, Mat. sb., 185:9 (1994), 81–94
[200] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Mat. sb., 177:3 (1988), 346–360 | MR
[201] Kondratev V. A., Eidelman S. D., “O polozhitelnykh resheniyakh nekotorykh kvazilineinykh uravnenii”, Dokl. RAN, 331:3 (1993), 278–280 | MR
[202] Kondratev V. A., Eidelman S. D., “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. RAN, 334:4 (1994), 427–428 | MR | Zbl
[203] Konkov A. A., “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. mat., 63:2 (1999), 41–126 | MR
[204] Konkov A. A., “Povedenie reshenii polulineinykh ellipticheskikh neravenstv v okrestnosti singulyarnosti”, Dokl. RAN, 366:5 (1999), 595–598 | MR
[205] Konkov A. A., “Neotritsatelnye resheniya polulineinykh ellipticheskikh neravenstv v oblastyakh, prinadlezhaschikh sloyu”, Dif. uravneniya, 36:7 (2000), 889–897 | MR
[206] Konkov A. A., “O resheniyakh kvazilineinykh ellipticheskikh neravenstv, obraschayuschikhsya v nul v okrestnosti beskonechnosti”, Mat. zametki, 67:1 (2000), 153–156 | MR
[207] Konkov A. A., “O resheniyakh neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 65:2 (2001), 81–125 | MR
[208] Kurta V. V., Nekotorye voprosy kachestvennoi teorii nelineinykh differentsialnykh uravnenii vtorogo poryadka, Dis. $\dots$ dokt. fiz.-mat. nauk, MIAN, M., 1994
[209] Kurta V. V., “K voprosu ob otsutstvii tselykh polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, UMN, 50:4 (1995), 131
[210] Kurta V. V., “K voprosu ob otsutstvii polozhitelnykh reshenii u ellipticheskikh uravnenii”, Mat. zametki, 65:4 (1999), 552–561 | MR | Zbl
[211] Kurta V. V., “Ob otsutstvii polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, Tr. MIAN, 227, 1999, 162–169 | MR | Zbl
[212] Kurta V. V., Kartsatos A. A., “Ob otsutstvii tselykh reshenii kvazilineinykh uravnenii”, Dokl. RAN, 371:5 (2000), 591–593 | MR | Zbl
[213] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR
[214] Laptev G. G., “Otsutstvie globalnykh polozhitelnykh reshenii sistem polulineinykh ellipticheskikh neravenstv v konusakh”, Izv. RAN. Ser. mat., 64:6 (2000), 107–124 | MR | Zbl
[215] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. MIAN, 232, 2001, 223–235 | MR | Zbl
[216] Laptev G. G., “Otsutstvie reshenii differentsialnykh neravenstv i sistem giperbolicheskogo tipa v konicheskikh oblastyakh”, Izv. RAN. Ser. mat., 66:6 (2002), 65–90 | MR | Zbl
[217] Laptev G. G., “Ob otsutstvii reshenii ellipticheskikh differentsialnykh neravenstv v konicheskikh oblastyakh”, Mat. zametki (to appear)
[218] Laptev G. G., “Ob otsutstvii reshenii ellipticheskikh differentsialnykh neravenstv v okrestnosti konicheskoi tochki granitsy”, Izv. vuzov. Ser. mat. (to appear)
[219] Laptev G. G., “Otsutstvie reshenii polulineinykh parabolicheskikh differentsialnykh neravenstv v konusakh”, Mat. sb., 192:10 (2001), 51–70 | MR | Zbl
[220] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR
[221] Miklyukov V. M., Emkostnye metody v zadachakh nelineinogo analiza, Dis. $\dots$ dokt. fiz.-mat. nauk, Tyumen. gos. un-t, Tyumen, 1980
[222] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl
[223] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb{R}^N$”, Tr. MIAN, 227, 1999, 192–222 | MR | Zbl
[224] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya sistem kvazilineinykh ellipticheskikh uravnenii i neravenstv v $\mathbb{R}^N$”, Dokl. RAN, 366:1 (1999), 13–17 | MR | Zbl
[225] Mitidieri E., Pokhozhaev S. I., “Otsutstvie slabykh reshenii dlya nekotorykh vyrozhdennykh i singulyarnykh giperbolicheskikh zadach v $\mathbb{R}_+^{n+1}$”, Tr. MIAN, 232, 2001, 248–267 | MR | Zbl
[226] Mitidieri E., Pokhozhaev S. I., “Nekotorye obobscheniya teoremy Bernshteina”, Dif. uravneniya (to appear)
[227] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[228] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Mat. sb., 82:2 (1970), 192–212 | MR
[229] Pokhozhaev S. I., “O periodicheskikh resheniyakh nekotorykh nelineinykh giperbolicheskikh uravnenii”, DAN SSSR, 198:6 (1971), 1274–1277 | MR | Zbl
[230] Pokhozhaev S. I., “O metode globalnogo rassloeniya v nelineinykh variatsionnykh zadachakh”, Tr. MIAN, 219, 1997, 286–334 | MR | Zbl
[231] Pokhozhaev S. I., “Suschestvenno nelineinye emkosti, indutsirovannye differentsialnymi operatorami”, Dokl. RAN, 357:5 (1997), 592–594 | MR | Zbl
[232] Pokhozhaev S. I., “O suschestvovanii i otsutstvii periodicheskikh reshenii dlya nekotorykh kvazilineinykh giperbolicheskikh uravnenii”, Dokl. RAN, 363:3 (1998), 304–307 | MR | Zbl
[233] Pokhozhaev S. I., “Suschestvovanie i otsutstvie periodicheskikh reshenii dlya nekotorykh nelineinykh giperbolicheskikh uravnenii”, Tr. MIAN, 227, 1999, 260–285 | MR | Zbl
[234] Pokhozhaev S. I., Tesei A., “Mgnovennoe razrushenie reshenii nelineinykh parabolicheskikh i giperbolicheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)
[235] Pokhozhaev S. I., Tesei A., “O kriticheskikh pokazatelyakh otsutstviya reshenii dlya sistem kvazilineinykh parabolicheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)
[236] Pokhozhaev S. I., Tesei A., “O polnom razrushenii reshenii nelineinykh ellipticheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)
[237] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR
[238] Khung Nguen Man, “Ob otsutstvii polozhitelnykh reshenii nelineinykh ellipticheskikh uravnenii vtorogo poryadka v konicheskikh oblastyakh”, Dif. uravneniya, 34:4 (1998), 533–539 | MR | Zbl
[239] Khung Nguen Man, “Asimptotika reshenii pervoi kraevoi zadachi dlya silno giperbolicheskikh sistem vblizi konicheskoi tochki granitsy oblasti”, Mat. sb., 190:7 (2000), 103–126
[240] Chi Nguen Min, “Polozhitelnye resheniya uravneniya Emdena–Foulera v konuse”, Dif. uravneniya, 30:4 (1994), 659–664 | MR | Zbl