A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Tome 234 (2001), pp. 3-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general approach is proposed to a priori estimates for solutions to nonlinear partial differential equations and inequalities. Applications of these estimates to the problem of nonexistence of solutions are considered. The method is based on the concept of nonlinear capacity induced by a nonlinear differential operator. The contents of this volume are divided into three parts devoted to elliptic, parabolic, and hyperbolic nonlinear problems. For specialists in nonlinear partial differential equations, mathematical physics, and applied mathematics, as well as for postgraduates and senior students of relevant specialities.
@article{TM_2001_234_a0,
     author = {E. Mitidieri and S. I. Pokhozhaev},
     title = {A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {3--383},
     publisher = {mathdoc},
     volume = {234},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_234_a0/}
}
TY  - JOUR
AU  - E. Mitidieri
AU  - S. I. Pokhozhaev
TI  - A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 3
EP  - 383
VL  - 234
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_234_a0/
LA  - ru
ID  - TM_2001_234_a0
ER  - 
%0 Journal Article
%A E. Mitidieri
%A S. I. Pokhozhaev
%T A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 3-383
%V 234
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_234_a0/
%G ru
%F TM_2001_234_a0
E. Mitidieri; S. I. Pokhozhaev. A~priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities, Tome 234 (2001), pp. 3-383. http://geodesic.mathdoc.fr/item/TM_2001_234_a0/

[1] Aguirre J., Escobedo M., “On the blow-up of solutions of a convective reaction diffusion equation”, Proc. Roy. Soc. Edinburgh A, 123 (1993), 433–460 | MR | Zbl

[2] Alinhac S., Blow-up for nonlinear hyperbolic equations, Progr. Nonlin. Diff. Equat. and Appl., 17, Birkhäuser, Boston etc., 1995 | MR | Zbl

[3] Amann H., Fila M., “A Fujita-type theorem for the Laplace equation with a dynamical boundary condition”, Acta Math. Univ. Comenian, 66 (1997), 321–328 | MR | Zbl

[4] Asakura F., “Existence of a global solution to a semilinear wave equation with slowly decreasing initial data”, Commun. Part. Diff. Equat., 11 (1986), 1459–1484 | DOI | MR

[5] Bahouri H., Shatah J., “Decay estimates for the critical semilinear wave equation”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 15 (1998), 783–789 | DOI | MR | Zbl

[6] Bandle C., “Positive solutions of Emden equations in cone-like domains”, Nonlinear diffusion equations and their equilibrium states, 3, Progr. Nonlin. Diff. Equat. and Appl., 7, eds. N. G. Lloyd, W.-M. Ni, L. A. Peletier, J. Serrin, Birkhäuser, Boston etc., 1992, 71–75 | MR

[7] Bandle C., Bruner B., “Blow-up in diffusion equations: A survey”, J. Comput. Appl. Math., 97 (1998), 3–22 | DOI | MR | Zbl

[8] Bandle C., Essen M., “On positive solutions of Emden equations in cone-like domains”, Arch. Ration. Mech. and Anal., 112 (1990), 319–338 | DOI | MR | Zbl

[9] Bandle C., Levine H. A., Zhang Q. S., “Critical exponents of Fujita type for inhomogeneous parabolic equations and systems”, J. Math. Anal. and Appl., 251 (2000), 624–648 | DOI | MR | Zbl

[10] Bebernes J., “Blowup — when, where, and how?”, Bull. Soc. Math. Belg. A., 40 (1988), 3–45 | MR | Zbl

[11] Bebernes J., Bressan A., Galaktionov V. A., “On symmetric and nonsymmetric blowup for a weakly quasilinear heat equation”, Nonlin. Diff. Equat. and Appl., 3 (1996), 269–286 | DOI | MR | Zbl

[12] Bebernes J., Bricher S., Galaktionov V. A., “Asymptotics of blowup for weakly quasilinear parabolic problems”, Nonlin. Anal., 23 (1994), 489–514 | DOI | MR | Zbl

[13] Bebernes J., Eberly D., “Characterization of blow-up for a semilinear heat equation with a convection term”, Quart. J. Mech. and Appl. Math., 42 (1989), 447–456 | DOI | MR | Zbl

[14] Bebernes J., Galaktionov V. A., “On classification of blow-up patterns for a quasilinear heat equations”, Diff. Integr. Equat., 9 (1996), 655–670 | MR | Zbl

[15] Bebernes J., Lacey A., “Finite-time blowup for a particular parabolic system”, SIAM J. Math. Anal., 21 (1990), 1415–1425 | DOI | MR | Zbl

[16] Bebernes J., Lacey A., “Finite time blowup for semilinear reactive-diffusive systems”, J. Diff. Equat., 95 (1992), 105–129 | DOI | MR | Zbl

[17] Bebernes J., Lacey A. A., “Global existence and finite-time blow-up for a class of nonlocal parabolic problems”, Adv. Diff. Equat., 2 (1997), 927–953 | MR | Zbl

[18] Bebernes J., Li C., Talaga P., “Single-point blowup for nonlocal parabolic problems”, Physika D., 134 (1999), 48–60 | DOI | MR | Zbl

[19] Belchev E., Kepka M., Zhou Z., “Global existence of solutions to semilinear wave equations”, Commun. Part. Diff. Equat., 24 (1999), 2297–2331 | MR | Zbl

[20] Benguria R., Lorca S., Yarur C., “Nonexistence of positive solutions of semilinear elliptic equations”, Duke Math. J., 74 (1994), 615–634 | DOI | MR | Zbl

[21] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., “Problèmes elliptiques indéfinis et théorèmes de Liouville non-linéaires”, C. R. Acad. Sci. Paris. Sér. 1, 317 (1993), 945–950 | MR | Zbl

[22] Berestycki H., Capuzzo Dolcetta I., Nirenberg L., “Superlinear indefinite elliptic problems and nonlinear Liouville theorems”, Top. Meth. Nonlin. Anal., 4 (1995), 59–78 | MR

[23] Bernstein S. N., “Sur un théoréme de géometric et son application aux équations aux derivées partielles du type elliptique”, Commun. Soc. Math. Kharkov. Ser. 2, 15 (1915–1917), 38–45 | Zbl

[24] Bidaut-Veron M.-F., “Local and global behavior of solutions of quasilinear equations of Emden–Fowler type”, Arch. Ration. Mech. and Anal., 107 (1989), 293–324 | DOI | MR | Zbl

[25] Bidaut-Veron M.-F., Grillot P., “Asymptotic behaviour of elliptic system with mixed absorption and source terms”, Asymp. Anal., 19 (1999), 117–147 | MR | Zbl

[26] Bidaut-Veron M.-F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math., 2001 (to appear) | MR

[27] Bidaut-Veron M.-F., Raoux T., “Asymptotics of solutions of some nonlinear elliptic systems”, Commun. Part. Diff. Equat., 21 (1996), 1035–1086 | DOI | MR | Zbl

[28] Bidaut-Veron M.-F., Veron L., “Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations”, Invent. Math., 106 (1991), 489–539 | DOI | MR | Zbl

[29] Birindelli I., Capuzzo Dolcetta I., Cutri A., “Liouville theorems for semilinear equations on the Heisenberg group”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 14 (1997), 295–308 | DOI | MR | Zbl

[30] Birindelli I., Mitidieri E., “Liouville theorems for elliptic inequalities and applications”, Proc. Roy. Soc. Edinburgh A., 128 (1998), 1217–1247 | MR | Zbl

[31] Bressan A., “Stable blow-up patterns”, J. Diff. Equat., 98 (1992), 57–75 | DOI | MR | Zbl

[32] Brezis H., Cabré X., “Some simple nonlinear PDE's without solutions”, Boll. Un. Mat. Ital. B., 8 (1998), 223–262 | MR | Zbl

[33] Budd C., Cliffe K. A., Dux F., “The effect of frequency and clearance variations on a single degree of freedom impact oscillator”, J. Sound Vibration, 184 (1995), 475–502 | DOI | Zbl

[34] Budd C., Collins G., Galaktionov V., “An asymptotic and numerical description of self-similar blow-up in quasilinear parabolic equations”, J. Comput. Appl. Math., 97 (1998), 51–80 | DOI | MR | Zbl

[35] Budd C., Galaktionov V., “Stability and spectra of blow-up in problems with quasi-linear gradient diffusivity”, Proc. Roy. Soc. London A., 454 (1998), 2371–2407 | DOI | MR | Zbl

[36] Budd C., Galaktionov V., Chen J., “Focusing blow-up for quasilinear parabolic equations”, Proc. Roy. Soc. Edinburgh A, 128 (1998), 965–992 | MR | Zbl

[37] Budd C., Harris C., Vickers J., “Dynamic models for the competition between two companies seeking a monopoly”, Rev. Econom. Stud., 60 (1993), 543–573 | DOI | Zbl

[38] Budd C., Koomullil G., Stuart A., “On the solution of convection-diffusion boundary-value problems using equidistributed grids”, SIAM J. Sci. Comput., 20 (1998), 591–618 | DOI | MR

[39] Caristi G., “Existence and nonexistence of global solutions of degenerate and singular parabolic systems”, Abstr. Appl. Anal. (to appear) | MR

[40] Caristi G., “Some nonexistence theorems for systems of quasilinear elliptic inequalities”, Russ. J. Math. Phys. (to appear)

[41] Caristi G., Mitidieri E., “Blow-up estimates of positive solutions of a parabolic system”, J. Diff. Equat., 113 (1994), 265–271 | DOI | MR | Zbl

[42] Caristi G., Mitidieri E., “Nonexistence of positive solutions of quasilinear equations”, Adv. Diff. Equat., 2 (1997), 319–359 | MR | Zbl

[43] Choquet-Bruhat Y., “Global existence for solutions of $\Box u=A|u|^p$”, J. Diff. Equat., 92 (1989), 98–108 | DOI | MR

[44] Christodoulou D., “Global solutions of nonlinear hyperbolic equations for small initial data”, Commun. Pure and Appl. Math., 39 (1986), 267–282 | DOI | MR | Zbl

[45] Clément Ph., de Figueiredo D., Mitidieri E., “Quasilinear elliptic equations with critical exponents”, Top. Meth. Nonlin. Anal., 7 (1996), 133–170 | MR | Zbl

[46] Clément Ph., Fleckinger J., Mitidieri E., de Thelin F., “Existence of positive solutions for a nonvariational elliptic system”, J. Diff. Equat., 166:2 (2000), 455–477 | DOI | MR | Zbl

[47] Clément Ph., Manásevich R., Mitidieri E., “Positive solutions for a quasilinear system via blow-up”, Commun. Part. Diff. Equat., 18 (1993), 2071–2106 | DOI | MR | Zbl

[48] Clément Ph., Manásevich R., Mitidieri E., “On a modified capillary equation”, J. Diff. Equat., 124:2 (1996), 343–358 | DOI | MR | Zbl

[49] Clément Ph., Manásevich R., Mitidieri E., “Some existence and non-existence results for a homogeneous quasilinear problem”, Asymp. Anal., 17 (1998), 13–29 | MR | Zbl

[50] Constantin A., Escher J., “Well-posedness, global existence and blowup phenomena for a periodic quasilinear hyperbolic equation”, Commun. Pure and Appl. Math., L1:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[51] Datti P., “Nonlinear wave equations in exterior domains”, Nonlin. Anal., 15 (1990), 321–331 | DOI | MR | Zbl

[52] Del Santo D., “Global existence and blow-up for a hyperbolic system in three space dimensions”, Rend. Ist. Mat. Univ. Trieste, 29 (1997), 167–188 | MR

[53] Del Santo D., Georgiev V., Mitidieri E., “Global existence of the solutions and formation of singularities for a class of hyperbolic systems”, Geometrical optics and related topics, Progr. Nonlin. Diff. Equat. and Appl., 32, eds. F. Colombini, N. Lerner, Birkhäuser, Boston etc., 1997, 117–140 | MR

[54] Deng K., Fila M., Levine H. A., “On critical exponents for a system of heat equations coupled in the boundary conditions”, Acta Math. Univ. Comenian, 63 (1994), 169–192 | MR | Zbl

[55] Deng K., Levine H. A., “The role of critical exponent in blow-up theorem: the sequel”, J. Math. Anal. and Appl., 243 (2000), 85–126 | DOI | MR | Zbl

[56] Di Benedetto E., Degenerate parabolic equations, Springer, N.Y. etc., 1993 | MR | Zbl

[57] Egnell H., “Positive solutions of semilinear equations in cones”, Trans. Amer. Math. Soc., 330:1 (1992), 191–201 | DOI | MR | Zbl

[58] Egorov Y. V., Galaktionov V. A., Kondratiev V. A., Pohozaev S. I., “On the necessary condictions of global existence of solutions to a quasilinear inequality in the half-space”, C. R. Acad. Sci. Paris. Sér. 1, 330 (2000), 93–98 | MR | Zbl

[59] Escobedo M., Herrero M. A., “Boundedness and blow up for a semilinear reaction-diffusion system”, J. Diff. Equat., 89 (1991), 176–202 | DOI | MR | Zbl

[60] Escobedo M., Levine H. A., “Explosion et existence globale pour un système faiblement couplé d'équations de réaction diffusion”, C. R. Acad. Sci. Paris. Sér. 1, 314 (1992), 735–739 | MR | Zbl

[61] Escobedo M., Levine H. A., “Critical blowup and global existence numbers for a weakly coupled system of reaction-diffusion equations”, Arch. Ration. Mech. and Anal., 129 (1995), 47–100 | DOI | MR | Zbl

[62] Felmer P., de Figueiredo D. G., “Superquadratic elliptic systems”, Trans. Amer. Math. Soc., 343 (1994), 99–116 | DOI | MR | Zbl

[63] de Figueiredo D., “Semilinear elliptic systems”, Nonlinear functional analysis and applications to differential equations (Italy, 21 Apr.–9 May 1997), ICTP Trieste, World Sci., Singapore, 1998, 122–152 | MR | Zbl

[64] Fila M., Levine H. A., “On critical exponents for a semilinear parabolic system coupled in an equation and a boundary condition”, J. Math. Anal. and Appl., 204 (1996), 494–521 | DOI | MR | Zbl

[65] Fila M., Levine H. A., Uda Y., “A Fujita-type global existence – global non-existence theorem for a system of reaction diffusion equations with differing diffusitivies”, Math. Meth. Appl. Sci., 17 (1994), 807–835 | DOI | MR | Zbl

[66] Filippucci R., Pucci P., “Nonexistence and other properties for solutions of quasilinear elliptic equations”, Diff. Integr. Equat., 8 (1995), 525–538 | MR | Zbl

[67] Friedman A., Giga Y., “A single point blow-up for solutions of semilinear parabolic systems”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 34 (1987), 65–79 | MR | Zbl

[68] Fujita H., “On the blowing up of solutions of the Cauchy problems for $u_t=\Delta u+u^{1+\alpha}$”, J. Fac. Sci. Univ. Tokyo. Sect. IA, 13 (1966), 109–124 | MR | Zbl

[69] Furusho Y., Kusano T., Ogata A., “Symmetric positive entire solutions of second-order quasilinear degenerate elliptic equations”, Arch. Ration. Mech. and Anal., 127 (1994), 231–254 | DOI | MR | Zbl

[70] Galakhov E., “Some nonexistence results for quasilinear elliptic problems”, J. Math. Anal. and Appl., 252 (2000), 256–277 | DOI | MR | Zbl

[71] Galaktionov V. A., “On new exact blow-up solutions for nonlinear heat conduction equations with source and applications”, Diff. Integr. Equat., 3 (1990), 863–874 | MR | Zbl

[72] Galaktionov V. A., Hulshof J., Vazquez J. L., “Extinction and focusing behaviour of spherical and annular flames described by a free boundary problem”, J. Math. Pures et Appl., 76 (1997), 563–608 | MR | Zbl

[73] Galaktionov V. A., Peletier L. A., “Asymptotic behaviour near finite-time extincion for the fast diffusion equation”, Arch. Ration. Mech. and Anal., 139 (1997), 83–98 | DOI | MR | Zbl

[74] Galaktionov V. A., Pohozaev S. I., Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations, Preprint Univ. Bath. Math. 00/10, 2000

[75] Galaktionov V. A., Vazquez J. L., “Necessary and sufficient conditions of complete blow up and extinction for one-dimensional quasilinear heat equations”, Arch. Ration. Mech. and Anal., 129 (1996), 225–244 | DOI | MR

[76] Galaktionov V. A., Vazquez J. L., “Blow-up of a class of solutions with free boundaries for the Navier–Stokes equations”, Adv. Diff. Equat., 4 (1997), 291–321 | MR

[77] Galaktionov V. A., Vazquez J. L., “Continuation of blowup solutions of nonlinear heat equations in several space dimensions”, Commun. Pure and Appl. Math., 50 (1997), 1–67 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[78] Galaktionov V. A., Vazquez J. L., The problem of blow-up in nonlinear parabolic equations, Preprint Univ. Bath. Math. 00/04, 2000 | MR

[79] Garofalo N., Lanconelli E., “Existence and nonexistence results for semilinear equations on the Heisenberg group”, Indiana Univ. Math. J., 41 (1992), 71–97 | DOI | MR

[80] Gazzola F., Grunau H.-C., Mitidieri E., Hardy inequalities with optimal constants and remainder terms, Preprint Univ. Roma 3, 2000 | MR

[81] Georgiev V., “Une estimation avec poids pour l'équation des ondes”, C. R. Acad. Sci. Paris. Sér. 1, 322 (1996), 829–834 | MR | Zbl

[82] Georgiev V., “Existence of global solutions to supercritical semilinear wave equations”, Serdica, 22 (1996), 125–164 | MR | Zbl

[83] Georgiev V., Lindblad H., Sogge C., “Weighted Strichartz estimate and global existence for semilinear wave equation”, Amer. J. Math., 119 (1997), 1291–1319 | DOI | MR | Zbl

[84] Georgiev V., Todorova G., “Global solution for three-dimensional weak viscosity”, C. R. Acad. Bulg. Sci., 47 (1994), 17–20 | MR | Zbl

[85] Giacomoni J., “Some results about blow-up and global existence to a semilinear degenerate heat equation”, Rev. Mat. Univ. Complut. Madrid, 11:2 (1998), 325–351 | MR | Zbl

[86] Gidas B., Spruck J., “Global and local behavior of positive solutions of nonlinear elliptic equations”, Commun. Pure and Appl. Math., 34 (1981), 525–598 | DOI | MR | Zbl

[87] Gidas B., Spruck J., “A priori bounds for positive solutions of nonlinear elliptic equations”, Commun. Part. Diff. Equat., 6:8 (1981), 883–901 | DOI | MR | Zbl

[88] Giga Y., “A bound for global solutions of semilinear heat equations”, Commun. Math. Phys., 103 (1986), 414–421 | DOI | MR

[89] Giga Y., Kohn R. V., “Asymptotically self-similar blow-up of semilinear heat equations”, Commun. Pure and Appl. Math., 38 (1985), 297–319 | DOI | MR | Zbl

[90] Giga Y., Kohn R., “Characterizing blowup using similarity variables”, Indiana Univ. Math. J., 36 (1987), 1–40 | DOI | MR | Zbl

[91] Ginibre J., Soffer A., Velo G., “The global Cauchy problem for the critical non-linear wave equation”, J. Funct. Anal., 110 (1982), 96–130 | DOI | MR

[92] Ginibre J., Velo G., “The global Cauchy problem for the critical non linear Klein–Gordon equation”, Math. Ztschr., 189 (1985), 487–505 | DOI | MR | Zbl

[93] Ginibre J., Velo G., “Conformal invariance and time decay for nonlinear wave equation, I”, Ann. Inst. H. Poincaré. Phys. Théor., 47 (1987), 221–261 | MR | Zbl

[94] Ginibre J., Velo G., “Conformal invariance and time decay for nonlinear wave equation, II”, Ann. Inst. H. Poincaré. Phys. Théor., 47 (1987), 263–276 | MR | Zbl

[95] Ginibre J., Velo G., “Generalized Strichartz inequalities for the wave equation”, J. Funct. Anal., 133 (1995), 50–68 | DOI | MR | Zbl

[96] Giusti E., Minimal surfaces and functions of bounded variations, Birkhäuser, Basel etc., 1984 | MR | Zbl

[97] Glassey R., “Blow-up theorems for nonlinear wave equations”, Math. Ztschr., 132 (1973), 182–203 | DOI | MR

[98] Glassey R., “Existence in the large for $\Box u=F(u)$ in two space dimensions”, Math. Ztschr., 178 (1981), 233–261 | DOI | MR | Zbl

[99] Glassey R., “Finite time blow-up for solutions of nonlinear wave equations”, Math. Ztschr., 177 (1981), 323–340 | DOI | MR | Zbl

[100] Grillakis M., “Regularity for the wave equation with a critical nonlinearity”, Commun. Pure and Appl. Math., 45 (1992), 749–774 | DOI | MR | Zbl

[101] Hayakawa K., “On the nonexistence of global solutions of some semilinear parabolic equations”, Proc. Japan Acad., 49 (1973), 503–505 | DOI | MR | Zbl

[102] Hörmander L., Lectures on nonlinear hyperbolic differential equations, Math. and Appl., 26, Springer-Verl., Berlin etc., 1997 | MR

[103] Hoshiga A., “The lifespan of solutions to quasilinear hyperbolic systems in the critical case”, Funkcial. Ekvac., 41 (1998), 167–188 | MR | Zbl

[104] Hoshiga A., Kubo H., “Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition”, SIAM J. Math. Anal., 31 (2000), 486–513 | DOI | MR | Zbl

[105] John F., “Blow-up of solutions of nonlinear wave equation in three space dimensions”, Manuscr. Math., 28 (1979), 235–268 | DOI | MR | Zbl

[106] John F., “Blow-up for quasi-linear wave equations in three space dimensions”, Commun. Pure and Appl. Math., 34 (1981), 29–51 | DOI | MR | Zbl

[107] John F., “Existence for large times of strict solutions to nonlinear wave equations in three space dimensions for small data”, Commun. Pure and Appl. Math., 40 (1987), 79–109 | DOI | MR | Zbl

[108] John F., Nonlinear wave equations, formation of singularities, Univ. Lect. Ser., 2, Amer. Math. Soc., Providence, RI, 1990 | MR | Zbl

[109] John F., Klainerman S., “Almost global existence to nonlinear wave equations in three space dimensions”, Commun. Pure and Appl. Math., 37 (1984), 443–455 | DOI | MR | Zbl

[110] Kato T., “Blow-up of solutions of some nonlinear hyperbolic equations”, Commun. Pure and Appl. Math., 33 (1980), 501–505 | DOI | MR | Zbl

[111] Keel M., Tao T., “Small data blowup for semilinear Klein–Gordon equations”, Amer. J. Math., 121 (1999), 629–669 | DOI | MR | Zbl

[112] Keller J., “On solutions of nonlinear wave equations”, Commun. Pure and Appl. Math., 10 (1957), 523–530 | DOI | MR | Zbl

[113] Kondratev V. A., Eidelman S. D., “Positive solutions of quasilinear Emden–Fowler systems of arbitrary order”, Russ. J. Math. Phys., 2:4 (1994), 535–540 | MR

[114] Kondratev V. A., Eidelman S. D., “On the summability in $L^p$ of positive solutions of elliptic equations”, Russ. J. Math. Phys., 7:2 (2000), 206–215 | MR

[115] Kondratev V. A., Landis E. M., “Qualitative theory of second order linear partial differential equations”, Partial differential equations, 3, Encycl. Math. Sci., 32, eds. Yu. Egorov, M. Shubin, Springer-Verl., Berlin etc., 1991, 87–192

[116] Kon'kov A. A., “Behavior of solutions of nonlinear second-order elliptic inequalities”, Nonlin. Anal., 42:7 (2000), 1253–1270 | DOI | MR

[117] Kon'kov A. A., “On nonnegative solutions of quasilinear elliptic inequalities in domains belonging to $\mathbb{R}^2$”, Russ. J. Math. Phys., 7:4 (2000), 371–401 | MR

[118] Korman P., “On blow up of solutions of nonlinear evolution equations”, Proc. Amer. Math. Soc., 103:1 (1988), 189–197 | DOI | MR | Zbl

[119] Kuzin I., Pohozaev S., Entire solutions of semilinear elliptic equations, Birkhäuser, Boston etc., 1997 | MR | Zbl

[120] Levine H. A., “Instability and nonexistence of global solutions of nonlinear wave equations of the form $Pu_{tt}=-Au+{\mathcal F}(u)$”, Trans. Amer. Math. Soc., 192 (1974), 1–21 | DOI | MR | Zbl

[121] Levine H. A., “The role of critical exponents in blowup problems”, SIAM Rev., 32 (1990), 262–288 | DOI | MR | Zbl

[122] Levine H. A., “A Fujita type global existence — global nonexistence theorem for a weakly coupled system of reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 42 (1991), 408–430 | DOI | MR | Zbl

[123] Levine H. A., Lieberman G. M., Meier P., “On critical exponents for some quasilinear parabolic equations”, Math. Meth. Appl. Sci., 12 (1990), 429–438 | DOI | MR | Zbl

[124] Levine H. A., Park S. R., Serrin J., “Global existence and global nonexistence of solutions of the Cauchy problem for a nonlinearly damped wave equation”, J. Math. Anal. and Appl., 228 (1998), 181–205 | DOI | MR | Zbl

[125] Levine H. A., Park S. R., Serrin J., “Global existence and nonexistence theorems for quasilinear evolution equations of formally parabolic type”, J. Diff. Equat., 142 (1998), 212–229 | DOI | MR | Zbl

[126] Levine H. A., Payne L. E., “Nonexistence of global weak solutions for classes of nonlinear wave and parabolic equations”, J. Math. Anal. and Appl., 5 (1976), 329–334 | DOI | MR

[127] Levine H. A., Serrin J., “Global nonexistence theorems for quasilinear evolution equations with dissipation”, Arch. Ration. Mech. and Anal., 137 (1997), 341–361 | DOI | MR | Zbl

[128] Levine H. A., Sleeman B., “A system of reaction diffusion equations arising in the theory of reinforced random walks”, SIAM J. Math. Anal., 57 (1997), 683–730 | DOI | MR | Zbl

[129] Levine H. A., Sleeman B. D., Nilsen-Hamilton M., “A mathematical model for the roles of pericytes and macrophages in the initiation of angiogenesis, I”, Math. Biosci., 168 (2000), 77–115 | DOI | MR | Zbl

[130] Levine H. A., Zhang Q. S., “The critical Fujita number for a semilinear heat equation in exterior domains with homogeneous Neumann boundary values”, Proc. Roy. Soc. Edinburgh A, 130 (2000), 591–602 | MR | Zbl

[131] Li T., Yu X., “Lifespan of classical solutions to fully nonlinear wave equations”, Commun. Part. Diff. Equat., 16 (1991), 909–940 | DOI | MR | Zbl

[132] Li T., Zhou Y., “A note on the life-span of classical solutions to nonlinear wave equations in four space dimensions”, Indiana Univ. Math. J., 44 (1995), 1207–1248 | MR | Zbl

[133] Li Yi, Santanilla J., “Existence and nonexistence of positive singular solutions for semilinear elliptic problems with applications in astrophysics”, Diff. Integr. Equat., 8 (1995), 1369–1383 | MR | Zbl

[134] Lindblad H., Sogge C., “On existence and scattering with minimal regularity for semilinear wave equations”, J. Funct. Anal., 130 (1995), 357–426 | DOI | MR | Zbl

[135] Merle F., Zaag H., “Optimal estimates for blowup rate and behaviour for nonlinear heat equations”, Commun. Pure and Appl. Math., 51 (1998), 139–196 | 3.0.CO;2-C class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[136] Merle F., Zaag H., “Refined uniform estimates at blow-up and applications for nonlinear heat equations”, Geom. Funct. Anal., 8 (1998), 1043–1085 | DOI | MR | Zbl

[137] Merle F., Zaag H., “A Liouville theorem for vector-valued nonlinear heat equations and applications”, Math. Ann., 316 (2000), 103–137 | DOI | MR | Zbl

[138] Mitidieri E., “A Rellich type identity and applications”, Commun. Part. Diff. Equat., 18 (1993), 125–151 | DOI | MR | Zbl

[139] Mitidieri E., “Nonexistence of positive solutions of semilinear elliptic systems in $\mathbb{R}^n$”, Diff. Integr. Equat., 9 (1996), 465–479 | MR | Zbl

[140] Mitidieri E., Sweers G., van der Vorst R., “Nonexistence theorems for systems of quasilinear partial differential equations”, Diff. Integr. Equat., 8 (1995), 1331–1354 | MR | Zbl

[141] Mochizuki K., Huang Q., “Existence and behavior of solutions for a weakly coupled system of reaction-diffusion equations”, Meth. Appl. Anal., 2 (1995), 109–124 | MR

[142] Mochizuki K., Suzuki R., “Critical exponent and critical blow up for quasi-linear parabolic equations”, Israel J. Math., 98 (1997), 141–156 | DOI | MR | Zbl

[143] Mustonen V., Pohozaev S. I., “On the nonexistence of periodic radial solutions for semilinear wave equations in unbounded domain”, Diff. Integr. Equat., 11:1 (1998), 133–145 | MR | Zbl

[144] Ni W.-M., “On a singular elliptic equation”, Proc. Amer. Math. Soc., 88 (1983), 614–616 | DOI | MR | Zbl

[145] Ni W.-M., Serrin J., “Non-existence theorems for quasilinear partial differential equations”, Rend. Circ. Mat. Palermo. Ser. 2. Suppl., 8 (1985), 171–185 | MR

[146] Ni W.-M., Serrin J., “Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case”, Atti Convegni Lincei, 77 (1986), 231–257

[147] Noussair E. Z., Swanson C., “Properties of potential systems in $\mathbb{R}^N$”, J. Diff. Equat., 95:1 (1992), 1–19 | DOI | MR | Zbl

[148] Ohta M., “Blow-up of solutions of dissipative nonlinear wave equations”, Hokkaido Math. J., 26 (1997), 115–124 | MR | Zbl

[149] Ohta M., “Remarks on blow-up of solutions for nonlinear evolution equations of second order”, Adv. Math. Sci. and Appl., 8 (1998), 901–910 | MR | Zbl

[150] Ono K., “Global existence, decay, and blow-up of solutions for some mildly degenerate nonlinear Kirchhoff strings”, J. Diff. Equat., 137 (1997), 273–301 | DOI | MR | Zbl

[151] Pohozaev S. I., Tesei A., “Blow-up of nonnegative solutions to quasilinear parabolic inequalities”, Atti Accad. Naz. Lincei. Cl. Sci. Fis. Mat. Natur. Rend. Lincei. Ser. 9, 11 (2000), 99–109 | MR | Zbl

[152] Protter M. H., Weinberger H. F., Maximum principles in differential equations, Springer-Verl., N.Y. etc., 1984 | MR | Zbl

[153] Pucci P., Serrin J., “Some new results on global nonexistence for abstract evolution with positive initial energy”, Top. Meth. Nonlin. Anal., 10:2 (1997), 241–247 | MR | Zbl

[154] Pucci P., Serrin J., “Global nonexistence for abstract evolution equations with positive initial energy”, J. Diff. Equat., 150:1 (1998), 203–214 | DOI | MR | Zbl

[155] Pucci P., Serrin J., Zou H., “A strong maximum principle and a compact support principle for singular elliptic inequalities”, Ric. Mat., 48 (1999), 373–398 | MR | Zbl

[156] Pucci P., Serrin J., Zou H., “A strong maximum principle and a compact support principle for singular elliptic inequalities”, J. Math. Pures et Appl., 78 (1999), 769–789 | DOI | MR | Zbl

[157] Pyke R. M., Sigal I. M., “Nonlinear wave equations: Constraints on periods and exponential bounds for periodic solutions”, Duke Math. J., 88:1 (1997), 133–180 | DOI | MR | Zbl

[158] Reichel W., Zou H., “Non-existence results for semilinear cooperative elliptic systems via moving spheres”, J. Diff. Equat., 161 (2000), 219–243 | DOI | MR | Zbl

[159] Schaeffer J., “The equation $u_{tt}-\Delta u=|u|^p$ for the critical value of $p$”, Proc. Roy. Soc. Edinburgh A, 101 (1985), 31–44 | MR | Zbl

[160] Serrin J., “Local behavior of solutions of quasilinear equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl

[161] Serrin J., “Isolated singularities of solutions of quasilinear equations”, Acta Math., 113 (1965), 219–241 | DOI | MR

[162] Serrin J., Positive solutions of prescribed mean curvature problem, Lect. Notes Math., 1340, Springer, N.Y. etc., 1998

[163] Serrin J., Zou H., “Nonexistence of positive solutions of Lane–Emden system”, Diff. Integr. Equat., 9 (1996), 635–653 | MR | Zbl

[164] Serrin J., Zou H., “Existence of positive solutions of the Lane–Emden system”, Atti Sem. Mat. Fis. Univ. Modena, 46 (1998), 369–380 | MR | Zbl

[165] Serrin J., Zou H., “Symmetry of ground states of quasilinear elliptic equations”, Arch. Ration. Mech. and Anal., 148 (1999), 265–290 | DOI | MR | Zbl

[166] Sideris T. C., “Nonexistence of global solutions to semilinear wave equations in high dimensions”, J. Diff. Equat., 52 (1984), 378–406 | DOI | MR | Zbl

[167] Soranzo R., “Isolated singularities of positive solutions of a superlinear biharmonic equations”, Pot. Anal., 6 (1997), 57–85 | DOI | MR | Zbl

[168] Straugham B., Explosive instabilities in mechanics, Springer-Verl., Berlin etc., 1998 | MR

[169] Strauss W. A., “Nonlinear scattering theory”, Scattering theory in mathematical physics, D. Reidel, Dordrecht, 1979, 53–79

[170] Strauss W. A., “Nonlinear scattering at low energy”, J. Funct. Anal., 41 (1981), 110–133 | DOI | MR | Zbl

[171] Strauss W. A., Nonlinear wave equations, CBMS Reg. Conf. Ser. Math., 73, Amer. Math. Soc., Providence, RI, 1989 | MR | Zbl

[172] Strauss W., Nonlinear invariant wave equations, Lect. Notes Phys., 78, Springer-Verl., Berlin, 1978 | MR

[173] Struwe M., Wave maps, Progr. Nonlin. Diff. Equat. and Appl., 29, Birkhäuser, Boston etc., 1997 | MR | Zbl

[174] Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equation”, Commun. Pure and Appl. Math., 20 (1967), 721–744 | DOI | MR

[175] Tsutaya K., “Global existence and the life span of solutions of semilinear wave equations with data of noncompact support in three space dimensions”, Funkcial. Ekvac., 37 (1994), 1–18 | MR | Zbl

[176] Uda Y., “The critical exponent for a weakly coupled system of the generalized Fujita type reaction-diffusion equations”, Ztschr. Angew. Math. und Phys., 46 (1995), 366–383 | DOI | MR | Zbl

[177] Vejvoda O., Herrmann L., Lovicar V., Partial differential equations: time-periodic solutions, Sijthoff Noordhoff, Maryland, Rockville, 1981

[178] Veron L., Pohozaev S. I., “Nonexistence results of solutions of semilinear differential inequalities on the Heisenberg group”, Manuscr. Math., 102 (2000), 85–99 | DOI | MR | Zbl

[179] Veron L., Pohozaev S. I., “Blow-up results for nonlinear hyperbolic inequalities”, Ann. Scuola Norm. Super. Pisa. Cl. Sci. Ser. 4, 29:2 (2001), 393–420 | MR

[180] Weissler F. B., “An $L^\infty$ blow-up estimate for a nonlinear heat equation”, Commun. Pure and Appl. Math., 38 (1985), 291–295 | DOI | MR | Zbl

[181] Yarur C., “Nonexistence of positive singular solutions for a class of semilinear elliptic systems”, Electron. J. Diff. Equat., 8 (1996), 1–22 | MR

[182] Yukiyoshi E., Shuichi K., Levine H. A., “On solutions to $u_{tt}-|x|^\alpha\Delta u=f(u)$ ($\alpha>0$)”, Funkcial. Ekvac., 38 (1995), 539–544 | MR | Zbl

[183] Zaag H., “A Liouville theorem and blow-up behavior for vector valued nonlinear heat equation with no gradient structure”, Commun. Pure and Appl. Math., 54:1 (2001), 107–133 | 3.0.CO;2-U class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[184] Zhang Q. S., “Blow-up results for nonlinear parabolic equations on manifolds”, Duke Math. J., 97 (1999), 515–539 | DOI | MR | Zbl

[185] Zou H., “Symmetry of ground states of semilinear elliptic equations with mixed Sobolev growth”, Indiana Univ. Math. J., 45 (1996), 221–240 | DOI | MR | Zbl

[186] Zou H., “On positive solutions for semilinear elliptic equations with an indefinite nonlinearity via bifurcation”, J. Part. Diff. Equat., 13 (2000), 133–150 | MR | Zbl

[187] Zou H., “Symmetry of ground states for a semilinear elliptic system”, Trans. Amer. Math. Soc., 352 (2000), 1217–1245 | DOI | MR | Zbl

[188] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[189] Galaktionov V. A., Egorov Yu. V., Kondratev V. A., Pokhozhaev S. I., “Ob usloviyakh suschestvovaniya reshenii kvazilineinogo neravenstva v poluprostranstve”, Mat. zametki, 67:1 (2000), 150–152. | MR | Zbl

[190] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[191] Goldshtein V. M., Reshetnyak Yu. G., Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR

[192] Guedda M., Kirane M., “Kritichnost dlya nekotorykh evolyutsionnykh uravnenii”, Dif. uravneniya, 2001 (to appear)

[193] Del Santo D., Mitidieri E., “Otsutstvie reshenii giperbolicheskoi sistemy: kriticheskii sluchai”, Dif. uravneniya, 34:9 (1998), 1157–1163 | MR | Zbl

[194] Ilyasov Ya. Sh., “O suschestvovanii konformno-ekvivalentnykh metrik dlya rimanovykh mnogoobrazii s kraem”, Dif. uravneniya, 35:1 (1999), 1–6 | MR

[195] Kiguradze I. T., Nachalnye i kraevye zadachi dlya sistem obyknovennykh differentsialnykh uravnenii, I, Metsniereba, Tbilisi, 1997 | MR | Zbl

[196] Kiguradze I. T., Chanturiya T. A., Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | Zbl

[197] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi i uglovymi tochkami”, Tr. Mosk. mat. o-va, 16, 1967, 209–292

[198] Kondratev V. A., “O resheniyakh slabo nelineinykh ellipticheskikh uravnenii v okrestnosti konicheskoi tochki granitsy”, Dif. uravneniya, 29:2 (1993), 298–305 | MR

[199] Kondratev V. A., Konkov A. A., “O svoistvakh reshenii odnogo klassa nelineinykh uravnenii vtorogo poryadka”, Mat. sb., 185:9 (1994), 81–94

[200] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Mat. sb., 177:3 (1988), 346–360 | MR

[201] Kondratev V. A., Eidelman S. D., “O polozhitelnykh resheniyakh nekotorykh kvazilineinykh uravnenii”, Dokl. RAN, 331:3 (1993), 278–280 | MR

[202] Kondratev V. A., Eidelman S. D., “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. RAN, 334:4 (1994), 427–428 | MR | Zbl

[203] Konkov A. A., “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. mat., 63:2 (1999), 41–126 | MR

[204] Konkov A. A., “Povedenie reshenii polulineinykh ellipticheskikh neravenstv v okrestnosti singulyarnosti”, Dokl. RAN, 366:5 (1999), 595–598 | MR

[205] Konkov A. A., “Neotritsatelnye resheniya polulineinykh ellipticheskikh neravenstv v oblastyakh, prinadlezhaschikh sloyu”, Dif. uravneniya, 36:7 (2000), 889–897 | MR

[206] Konkov A. A., “O resheniyakh kvazilineinykh ellipticheskikh neravenstv, obraschayuschikhsya v nul v okrestnosti beskonechnosti”, Mat. zametki, 67:1 (2000), 153–156 | MR

[207] Konkov A. A., “O resheniyakh neavtonomnykh obyknovennykh differentsialnykh uravnenii”, Izv. RAN. Ser. mat., 65:2 (2001), 81–125 | MR

[208] Kurta V. V., Nekotorye voprosy kachestvennoi teorii nelineinykh differentsialnykh uravnenii vtorogo poryadka, Dis. $\dots$ dokt. fiz.-mat. nauk, MIAN, M., 1994

[209] Kurta V. V., “K voprosu ob otsutstvii tselykh polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, UMN, 50:4 (1995), 131

[210] Kurta V. V., “K voprosu ob otsutstvii polozhitelnykh reshenii u ellipticheskikh uravnenii”, Mat. zametki, 65:4 (1999), 552–561 | MR | Zbl

[211] Kurta V. V., “Ob otsutstvii polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, Tr. MIAN, 227, 1999, 162–169 | MR | Zbl

[212] Kurta V. V., Kartsatos A. A., “Ob otsutstvii tselykh reshenii kvazilineinykh uravnenii”, Dokl. RAN, 371:5 (2000), 591–593 | MR | Zbl

[213] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971 | MR

[214] Laptev G. G., “Otsutstvie globalnykh polozhitelnykh reshenii sistem polulineinykh ellipticheskikh neravenstv v konusakh”, Izv. RAN. Ser. mat., 64:6 (2000), 107–124 | MR | Zbl

[215] Laptev G. G., “Ob otsutstvii reshenii odnogo klassa singulyarnykh polulineinykh differentsialnykh neravenstv”, Tr. MIAN, 232, 2001, 223–235 | MR | Zbl

[216] Laptev G. G., “Otsutstvie reshenii differentsialnykh neravenstv i sistem giperbolicheskogo tipa v konicheskikh oblastyakh”, Izv. RAN. Ser. mat., 66:6 (2002), 65–90 | MR | Zbl

[217] Laptev G. G., “Ob otsutstvii reshenii ellipticheskikh differentsialnykh neravenstv v konicheskikh oblastyakh”, Mat. zametki (to appear)

[218] Laptev G. G., “Ob otsutstvii reshenii ellipticheskikh differentsialnykh neravenstv v okrestnosti konicheskoi tochki granitsy”, Izv. vuzov. Ser. mat. (to appear)

[219] Laptev G. G., “Otsutstvie reshenii polulineinykh parabolicheskikh differentsialnykh neravenstv v konusakh”, Mat. sb., 192:10 (2001), 51–70 | MR | Zbl

[220] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR

[221] Miklyukov V. M., Emkostnye metody v zadachakh nelineinogo analiza, Dis. $\dots$ dokt. fiz.-mat. nauk, Tyumen. gos. un-t, Tyumen, 1980

[222] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl

[223] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb{R}^N$”, Tr. MIAN, 227, 1999, 192–222 | MR | Zbl

[224] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya sistem kvazilineinykh ellipticheskikh uravnenii i neravenstv v $\mathbb{R}^N$”, Dokl. RAN, 366:1 (1999), 13–17 | MR | Zbl

[225] Mitidieri E., Pokhozhaev S. I., “Otsutstvie slabykh reshenii dlya nekotorykh vyrozhdennykh i singulyarnykh giperbolicheskikh zadach v $\mathbb{R}_+^{n+1}$”, Tr. MIAN, 232, 2001, 248–267 | MR | Zbl

[226] Mitidieri E., Pokhozhaev S. I., “Nekotorye obobscheniya teoremy Bernshteina”, Dif. uravneniya (to appear)

[227] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[228] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Mat. sb., 82:2 (1970), 192–212 | MR

[229] Pokhozhaev S. I., “O periodicheskikh resheniyakh nekotorykh nelineinykh giperbolicheskikh uravnenii”, DAN SSSR, 198:6 (1971), 1274–1277 | MR | Zbl

[230] Pokhozhaev S. I., “O metode globalnogo rassloeniya v nelineinykh variatsionnykh zadachakh”, Tr. MIAN, 219, 1997, 286–334 | MR | Zbl

[231] Pokhozhaev S. I., “Suschestvenno nelineinye emkosti, indutsirovannye differentsialnymi operatorami”, Dokl. RAN, 357:5 (1997), 592–594 | MR | Zbl

[232] Pokhozhaev S. I., “O suschestvovanii i otsutstvii periodicheskikh reshenii dlya nekotorykh kvazilineinykh giperbolicheskikh uravnenii”, Dokl. RAN, 363:3 (1998), 304–307 | MR | Zbl

[233] Pokhozhaev S. I., “Suschestvovanie i otsutstvie periodicheskikh reshenii dlya nekotorykh nelineinykh giperbolicheskikh uravnenii”, Tr. MIAN, 227, 1999, 260–285 | MR | Zbl

[234] Pokhozhaev S. I., Tesei A., “Mgnovennoe razrushenie reshenii nelineinykh parabolicheskikh i giperbolicheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)

[235] Pokhozhaev S. I., Tesei A., “O kriticheskikh pokazatelyakh otsutstviya reshenii dlya sistem kvazilineinykh parabolicheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)

[236] Pokhozhaev S. I., Tesei A., “O polnom razrushenii reshenii nelineinykh ellipticheskikh neravenstv”, Dif. uravneniya, 2001 (to appear)

[237] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | MR

[238] Khung Nguen Man, “Ob otsutstvii polozhitelnykh reshenii nelineinykh ellipticheskikh uravnenii vtorogo poryadka v konicheskikh oblastyakh”, Dif. uravneniya, 34:4 (1998), 533–539 | MR | Zbl

[239] Khung Nguen Man, “Asimptotika reshenii pervoi kraevoi zadachi dlya silno giperbolicheskikh sistem vblizi konicheskoi tochki granitsy oblasti”, Mat. sb., 190:7 (2000), 103–126

[240] Chi Nguen Min, “Polozhitelnye resheniya uravneniya Emdena–Foulera v konuse”, Dif. uravneniya, 30:4 (1994), 659–664 | MR | Zbl