Asymptotics of Optimal Synthesis for One Class of Extremal Problems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 95-124
Cet article a éte moissonné depuis la source Math-Net.Ru
The asymptotics of an optimal control while approaching the origin is found for a class of mean square deviation minimization problems with a unilateral force. The asymptotics is described by a series of impulses of maximal amplitude that decrease in time and have the support in the neighborhoods of points of a certain infinite arithmetic progression. The results are applied to the investigation of controlled populational dynamics described by the Lottka–Volterra–Kolmogorov equations.
@article{TM_2001_233_a3,
author = {M. I. Zelikin and L. F. Zelikina and R. Hildebrand},
title = {Asymptotics of {Optimal} {Synthesis} for {One} {Class} of {Extremal} {Problems}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {95--124},
year = {2001},
volume = {233},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_233_a3/}
}
TY - JOUR AU - M. I. Zelikin AU - L. F. Zelikina AU - R. Hildebrand TI - Asymptotics of Optimal Synthesis for One Class of Extremal Problems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 95 EP - 124 VL - 233 UR - http://geodesic.mathdoc.fr/item/TM_2001_233_a3/ LA - ru ID - TM_2001_233_a3 ER -
M. I. Zelikin; L. F. Zelikina; R. Hildebrand. Asymptotics of Optimal Synthesis for One Class of Extremal Problems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 95-124. http://geodesic.mathdoc.fr/item/TM_2001_233_a3/
[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[2] Fuller A. T., “Constant-ratio trajectories in optimal control systems”, Intern. J. Contr., 58:6 (1993), 1409–1435 | DOI | MR | Zbl
[3] Kelley H. J., Kopp R. E., Moyer M. G., “Singular extremals”, Topics in optimization, Acad. Press, N.Y., 1967, 63–101 | MR
[4] Nitecki Z., Differentiable dynamics, MIT Press, Cambridge, MA, 1971 | MR
[5] Zelikin M. I., Borisov V. F., Theory of chattering control: With applications to astronautics, robotics, economics and engineering, Syst. Contr.: Found. Appl., Birkhäuser, Boston etc., 1994 | MR | Zbl