Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2001_233_a0, author = {S. M. Aseev}, title = {Extremal {Problems} for {Differential} {Inclusions} with {State} {Constraints}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {5--70}, publisher = {mathdoc}, volume = {233}, year = {2001}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2001_233_a0/} }
S. M. Aseev. Extremal Problems for Differential Inclusions with State Constraints. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Differential equations. Certain mathematical problems of optimal control, Tome 233 (2001), pp. 5-70. http://geodesic.mathdoc.fr/item/TM_2001_233_a0/
[1] Arutyunov A. V., “K neobkhodimym usloviyam optimalnosti v zadache s fazovymi ogranicheniyami”, DAN SSSR, 280:5 (1985), 1033–1037 | MR | Zbl
[2] Arutyunov A. V., “Neobkhodimye usloviya s fazovymi ogranicheniyami”, Tr. In-ta prikl. mat. Tbil. gos. un-ta, 27, 1988, 46–58 | MR
[3] Arutyunov A. V., “K teorii printsipa maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami”, DAN SSSR, 304:1 (1989), 11–14 | MR | Zbl
[4] Arutyunov A. V., “Vozmuscheniya ekstremalnykh zadach s ogranicheniyami i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Matematicheskii analiz, 27, VINITI, M., 1989, 147–235 | MR
[5] Arutyunov A. V., Usloviya ekstremuma. Anormalnye i vyrozhdennye zadachi, Faktorial, M., 1997 | MR | Zbl
[6] Arutyunov A. V., Aseev S. M., “Printsip maksimuma v zadachakh optimalnogo upravleniya s fazovymi ogranicheniyami. Nevyrozhdennost i ustoichivost”, Dokl. RAN, 334:2 (1994), 134–137 | MR | Zbl
[7] Arutyunov A. V., Aseev S. M., Blagodatskikh V. I., “Neobkhodimye usloviya pervogo poryadka v zadache optimalnogo upravleniya differentsialnym vklyucheniem s fazovymi ogranicheniyami”, Mat. sb., 184:6 (1993), 3–32 | MR | Zbl
[8] Arutyunov A. V., Blagodatskikh V. I., “Printsip maksimuma dlya differentsialnykh vklyuchenii s fazovymi ogranicheniyami”, Tr. MIAN, 200, 1991, 4–26 | Zbl
[9] Arutyunov A. V., Tynyanskii N. T., “O printsipe maksimuma v zadache s fazovymi ogranicheniyami”, Izv. AN SSSR. Tekhn. kibernetika, 1984, no. 4, 60–68 | MR | Zbl
[10] Aseev S. M., “Priblizhenie polunepreryvnykh mnogoznachnykh otobrazhenii nepreryvnymi”, Izv. AN SSSR. Ser. mat., 46:3 (1982), 460–476 | MR | Zbl
[11] Aseev S. M., “Gladkie approksimatsii differentsialnykh vklyuchenii i zadacha bystrodeistviya”, Tr. MIAN, 200, 1991, 27–34 | Zbl
[12] Aseev S. M., “Metod gladkikh approksimatsii v teorii neobkhodimykh uslovii optimalnosti dlya differentsialnykh vklyuchenii”, Izv. RAN. Ser. mat., 61:2 (1997), 3–26 | MR | Zbl
[13] Aseev S. M., “Zadacha optimalnogo upravleniya dlya differentsialnogo vklyucheniya s fazovym ogranicheniem. Gladkie approksimatsii i neobkhodimye usloviya optimalnosti”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 64, VINITI, M., 1999, 57–81 | MR | Zbl
[14] Afanasev A. P., Dikusar V. V., Milyutin A. A., Chukanov S. A., Neobkhodimoe uslovie v optimalnom upravlenii, Nauka, M., 1990 | MR
[15] Blagodatskikh V. I., “Printsip maksimuma dlya differentsialnykh vklyuchenii”, Tr. MIAN, 166, 1984, 23–43 | MR | Zbl
[16] Blagodatskikh V. I., Filippov A. F., “Differentsialnye vklyucheniya i optimalnoe upravlenie”, Tr. MIAN, 169, 1985, 194–252 | MR | Zbl
[17] Bliss Dzh., Lektsii po variatsionnomu ischisleniyu, Izd-vo inostr. lit., M., 1950
[18] Boltyanskii V. G., “Metod lokalnykh sechenii v teorii optimalnykh protsessov”, Dif. uravneniya, 4:12 (1968), 2166–2183 | Zbl
[19] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR
[20] Boltyanskii V. G., “Opornyi printsip v zadachakh optimalnogo upravleniya”, Dif. uravneniya, 9:8 (1973), 1363–1370 | Zbl
[21] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977 | MR
[22] Gamkrelidze R. V., “Optimalnye po bystrodeistviyu protsessy pri ogranichennykh fazovykh koordinatakh”, DAN SSSR, 125:3 (1959), 475–478 | MR | Zbl
[23] Gamkrelidze R. V., “Optimalnye protsessy upravleniya pri ogranichennykh fazovykh koordinatakh”, Izv. AN SSSR. Ser. mat., 24:3 (1960), 315–356 | MR | Zbl
[24] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967 | Zbl
[25] Devdariani E. N., Ledyaev Yu. S., “Usloviya optimalnosti dlya neyavnykh upravlyaemykh sistem”, Dokl. RAN, 328:1 (1993), 11–15 | MR | Zbl
[26] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1980 | MR | Zbl
[27] Dubovitskii A. Ya., Dubovitskii V. A., “Neobkhodimye usloviya silnogo minimuma v zadachakh optimalnogo upravleniya s vyrozhdeniem kontsevykh i fazovykh ogranichenii”, UMN, 40:2 (1985), 175–176 | MR
[28] Dubovitskii A. Ya., Dubovitskii V. A., “Printsip maksimuma v regulyarnykh zadachakh optimalnogo upravleniya, u kotorykh kontsy fazovoi traektorii lezhat na fazovoi granitse”, Avtomatika i telemekhanika, 1987, no. 12, 25–33 | MR
[29] Dubovitskii A. Ya., Dubovitskii V. A., “Usloviya potochechnoi netrivialnosti printsipa maksimuma v regulyarnoi zadache optimalnogo upravleniya”, Tr. In-ta prikl. mat. Tbil. gos. un-ta, 27 (1988), 60–88 | MR
[30] Dubovitskii A. Ya., Dubovitskii V. A., Printsip maksimuma traektorii, kontsy kotorykh lezhat na fazovoi granitse, Preprint, Chernogolovka, 1988
[31] Dubovitskii A. Ya., Dubovitskii V. A., “Kriterii suschestvovaniya soderzhatelnogo printsipa maksimuma v zadache optimalnogo upravleniya s fazovymi ogranicheniyami”, Dif. uravneniya, 31:10 (1995), 1611–1616 | MR
[32] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, DAN SSSR, 149:4 (1963), 759–762
[33] Dubovitskii A. Ya., Milyutin A. A., “Zadachi na ekstremum pri nalichii ogranichenii”, ZhVMiMF, 5:3 (1965), 395–453 | Zbl
[34] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[35] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[36] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1972
[37] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl
[38] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii s ogranichennymi fazovymi koordinatami”, PMM, 32:2 (1968), 194–202 | MR | Zbl
[39] Mordukhovich B. Sh., “Printsip maksimuma v zadache optimalnogo bystrodeistviya s negladkimi ogranicheniyami”, PMM, 40:6 (1976), 1014–1023 | MR | Zbl
[40] Mordukhovich B. Sh., “Metricheskie approksimatsii i neobkhodimye usloviya optimalnosti dlya obschikh klassov negladkikh ekstremalnykh zadach”, DAN SSSR, 254:5 (1980), 1072–1076 | MR | Zbl
[41] Mordukhovich B. Sh., “Shtrafnye funktsii i neobkhodimye usloviya ekstremuma v negladkikh i nevypuklykh zadachakh optimizatsii”, UMN, 36:1 (1981), 215–217 | MR | Zbl
[42] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniya, Nauka, M., 1988 | MR | Zbl
[43] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR
[44] Polovinkin E. S., Smirnov G. V., “Ekstremalnye zadachi dlya differentsialnykh vklyuchenii”, Nekotorye problemy sovremennoi matematiki i ikh prilozheniya k zadacham matematicheskoi fiziki, Izd. MFTI, M., 1985, 98–105 | MR
[45] Polovinkin E. S., Smirnov G. V., “Differentsirovanie mnogoznachnykh otobrazhenii i svoistva reshenii differentsialnykh vklyuchenii”, DAN SSSR, 288:2 (1986), 296–301 | MR | Zbl
[46] Polovinkin E. S., Smirnov G. V., “Ob odnom podkhode k differentsirovaniyu mnogoznachnykh otobrazhenii i neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii”, Dif. uravneniya, 22:6 (1986), 944–954 | MR | Zbl
[47] Polovinkin E. S., Smirnov G. V., “O zadache bystrodeistviya dlya differentsialnykh vklyuchenii”, Dif. uravneniya, 22:8 (1986), 1351–1365 | MR | Zbl
[48] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969
[49] Pshenichnyi B. N., “Neobkhodimye usloviya dlya differentsialnykh vklyuchenii”, Kibernetika, 1976, no. 6, 60–73
[50] Pshenichnyi B. N., Vypuklyi analiz i ekstremalnye zadachi, Nauka, M., 1980 | MR | Zbl
[51] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[52] Smirnov G. V., “Neobkhodimye usloviya optimalnosti reshenii differentsialnykh vklyuchenii s fazovymi ogranicheniyami”, Problemy sovremennoi matematiki v fiziko-tekhnicheskikh zadachakh, Izd. MFTI, M., 1987 | Zbl
[53] Smirnov G. V., “Diskretnye approksimatsii i optimalnye resheniya differentsialnykh vklyuchenii”, Kibernetika, 10 (1991), 76–79
[54] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR | Zbl
[55] Fedorenko R. P., “Printsip maksimuma dlya differentsialnykh vklyuchenii”, ZhVMiMF, 10:6 (1970), 1385–1393 | MR | Zbl
[56] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Matematika. Mekhanika. Astronomiya. Fizika. Khimiya, 1959, no. 2, 25–32 | Zbl
[57] Filippov A. F., “Klassicheskie resheniya differentsialnykh uravnenii s mnogoznachnoi pravoi chastyu”, Vestn. MGU. Matematika. Mekhanika, 1967, no. 3, 16–26 | MR | Zbl
[58] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985 | MR
[59] Edvards R., Funktsionalnyi analiz, Mir, M., 1969
[60] Arutyunov A. V., Aseev S. M., “State constraints in optimal control. The degeneracy phenomenon”, Syst. and Contr. Lett., 26 (1995), 267–273 | DOI | MR | Zbl
[61] Arutyunov A. V., Aseev S. M., “Investigation of the degeneracy phenomenon of the maximum principle for optimal control problems with state constraints”, SIAM J. Contr. and Optim., 35:3 (1997), 930–952 | DOI | MR | Zbl
[62] Aseev S. M., Smooth approximation of differential inclusions and time-optimal problem, Preprint CRM-1610, Montreal, 1989
[63] Aseev S. M., “Methods of regularization in nonsmooth problems of dynamic optimization”, J. Math. Sci., 94:3 (1999), 1366–1393 | DOI | MR | Zbl
[64] Aubin J.-P., Frankowska H., Set-valued analysis, Birkhäuser, Boston, 1990 | MR | Zbl
[65] Berliocchi H., Lasry J. M., “Principle de Pontryagin pour des systémes régis par une équation differentielle multivoque”, C. R. Acad. Sci. Paris, 277 (1973), 1103–1105 | MR | Zbl
[66] Blagodatskikh V. I., “Sufficient conditions for optimality in problems with state constraints”, Appl. Math. and Optim., 7 (1981), 149–157 | DOI | MR | Zbl
[67] Bliss G. A., “The problem of Mayer with variable end-points”, Trans. Amer. Math. Soc., 19 (1918), 305–314 | DOI | MR | Zbl
[68] Bliss G. A., “The problem of Bolza in the calculus of variations”, Ann. Math., 33 (1932), 261–274 | DOI | MR | Zbl
[69] Cesari L., “Optimization — theory and applications”, Problems with ordinary differential equations, Springer, New York, Berlin, 1983 | MR
[70] Clarke F. H., “Necessary conditions for nonsmooth variational problems”, Lect. Notes Econ. and Math. Syst., 106, 1974, 70–91 | Zbl
[71] Clarke F. H., “Generalized gradients and applications”, Trans. Amer. Math. Soc., 205 (1975), 247–262 | DOI | MR | Zbl
[72] Clarke F. H., “The Euler–Lagrange differential inclusion”, J. Diff. Equat., 19 (1975), 80–90 | DOI | MR | Zbl
[73] Clarke F. H., “The generalized problem of Bolza”, SIAM J. Contr. and Optim., 14 (1976), 682–699 | DOI | MR | Zbl
[74] Clarke F. H., “Optimal solutions to differential inclusions”, J. Optim. Theory and Appl., 19 (1976), 469–478 | DOI | MR | Zbl
[75] Clarke F. H., “Extremal arcs and extended Hamiltonian systems”, Trans. Amer. Math. Soc., 231 (1977), 349–367 | DOI | MR | Zbl
[76] Clarke F. H., Loewen P. D., Vinter R. B., “Differential inclusions with free time”, Ann. Inst. H. Poincaré. C: Anal. Nonlin, 5:6 (1988), 573–593 | MR | Zbl
[77] Davy J. L., “Properties of the solution set of a generalized differential equation”, Bull. Austral. Math. Soc., 6 (1972), 379–398 | DOI | MR | Zbl
[78] Ekeland I., “On the variational principle”, J. Math. Anal. and Appl., 47 (1974), 324–353 | DOI | MR | Zbl
[79] Ekeland I., Valadier M., “Representation of set-valued mappings”, J. Math. Anal. and Appl., 35:3 (1971), 621–629 | DOI | MR | Zbl
[80] Ferreira M. M. A., Vinter R. B., “When is the maximum principle for state constrained problems nondegenerate?”, J. Math. Anal. and Appl., 187 (1994), 438–467 | DOI | MR | Zbl
[81] Frankowska H., “The maximum principle for an optimal solution to a differential inclusion with endpoint constraints”, SIAM J. Contr. and Optim., 25 (1987), 145–157 | DOI | MR | Zbl
[82] Graves L. M., “A transformation of the problem of Lagrange in the calculus of variations”, Trans. Amer. Math. Soc., 35 (1933), 675–682 | DOI | MR | Zbl
[83] Hartl R. F., Sethi S. P., Vicson R. G., “A survey of the maximum principles for optimal control problems with state constraints”, SIAM Rev., 37:2 (1995), 181–218 | DOI | MR | Zbl
[84] Ioffe A. D., “Single-valued representation of set-valued mappings. 2: Application to differential inclusions”, SIAM J. Contr. and Optim., 21 (1983), 641–651 | DOI | MR | Zbl
[85] Ioffe A. D., “Nonsmooth subdifferentials: their calculus and applications”, Proc. 1st World Congr. Nonlinear Analysis, W. de Gruyter, Berlin, 1996, 2299–2310 | MR | Zbl
[86] Kaŝkosz B., “Optimal trajectories of generalized control systems with state constraints”, Nonlin. Anal. Theory, Meth. and Appl., 10:10 (1986), 1105–1121 | DOI | MR
[87] Kaŝkosz B., Lojasiewicz S., Jr., “A maximum principle for generalized control systems”, Nonlin. Anal. Theory, Meth. and Appl., 9:2 (1985), 109–130 | DOI | MR
[88] Kurzhanski A., Vályi I., Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1996 | MR
[89] Loewen P. D., Rockafellar R.T., “The adjoint arc in nonsmooth optimization”, Trans. Amer. Math. Soc., 325:1 (1991), 39–72 | DOI | MR | Zbl
[90] Loewen P. D., Rockafellar R. T., “Optimal control of unbounded differential inclusions”, SIAM J. Contr. and Optim., 32:2 (1994), 442–470 | DOI | MR | Zbl
[91] Loewen P. D., Rockafellar R. T., “New necessary conditions for the generalized problem of Bolza”, SIAM J. Contr. and Optim., 34:5 (1996), 1496–1511 | DOI | MR | Zbl
[92] Lojasiewicz S., Jr., “Invariance of extremals”, Nonlinear controllability and optimal control, Monogr. Textbooks Pure and Appl. Math., 133, ed. H. Sussmann, M. Dekker, New York, Basel, 1990, 237–261 | MR | Zbl
[93] Marchaud A., “Sur les champs des demi-cônes et les équations différentielles du premier ordre”, Bull. Soc. Math. France, 62 (1934), 1–38 | MR | Zbl
[94] Maurer H., “Differential stability in optimal control problems”, Appl. Math. and Optim., 5 (1979), 283–295 | DOI | MR | Zbl
[95] Maurer H., On the minimum principle for optimal control problems with state constraints, Preprint No 41, Schriftenr. Rechenzentr. Univ. Münster, Münster, 1979 | Zbl
[96] Michael E., “Continuous selections, I”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl
[97] Milyutin A. A., Osmolovskii N. P., Calculus of variations and optimal control, Transl. Math. Monogr., 180, Amer. Math. Soc., Providence, RI, 1991 | MR
[98] Mordukhovich B. S., “Descrete approximations and refined Euler–Lagrange conditions for nonconvex differential inclusions”, SIAM J. Contr. and Optim., 33:3 (1995), 887–915 | MR
[99] Mordukhovich B. S., “Optimization and finite difference approximation of nonconvex differential inclusions with free time”, Nonsmooth analysis and geometric methods in deterministic optimal control, IMA Vol. Math. Appl., 78, eds. B. Mordukhovich, H. Sussmann, Springer, N.Y. etc., 1996, 153–202 | MR | Zbl
[100] Neustadt L. W., “An abstract variational theory with applications to a broad class of optimization problems. II: Applications”, SIAM J. Contr., 5 (1967), 90–137 | DOI | MR | Zbl
[101] Ornelas A., “Parametrization of Carathéodory multifunctions”, Rend. Sem. Mat. Univ. Padova, 83 (1990), 33–44 | MR | Zbl
[102] Pappas G. S., “Optimal solutions to differential inclusions in presence of state constraints”, J. Optim. Theory and Appl., 44:4 (1984), 657–679 | DOI | MR | Zbl
[103] Rockafellar R. T., “Conjugate convex functions in optimal control and the calculus of variations”, J. Math. Anal. and Appl., 32 (1970), 174–222 | DOI | MR | Zbl
[104] Rockafellar R. T., “Generalized Hamiltonian equations for convex problems of Lagrange”, Pacif. J. Math., 33 (1970), 411–428 | MR
[105] Rockafellar R. T., “Existence and duality theorems for convex problems of Bolza”, Trans. Amer. Math. Soc., 159 (1971), 1–40 | DOI | MR | Zbl
[106] Rockafellar R. T., “Dualization of subgradient conditions for optimality”, Nonlin. Anal. Theory, Meth. and Appl., 20:6 (1993), 627–646 | DOI | MR | Zbl
[107] Rockafellar R. T., “Equivalent subgradient versions of Hamiltonian and Euler–Lagrange equations in variational analysis”, SIAM J. Contr. and Optim., 34 (1996), 1300–1314 | DOI | MR | Zbl
[108] Schneider R., “Equivariant endomorphisms of the space of convex bodies”, Trans. Amer. Math. Soc., 194 (1974), 53–78 | DOI | MR | Zbl
[109] Schneider R., “Smooth approximation of convex bodies”, Rend. Circ. Mat. Palermo. Ser. 2, 33 (1984), 436–440 | DOI | MR | Zbl
[110] Wazewski T., “Systems de commande et equations au contingent”, Bull. Acad. Polon. Sci. Ser. Sci. Math., Astron. et Phys., 9:12 (1961), 865–867 | MR | Zbl
[111] Zaremba S. C., “Sur les équations au paratingent”, Bull. Sci. Math., 60:5 (1936), 139–160 | Zbl