A Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 94-101
Voir la notice du chapitre de livre
A new lower estimate of the $L_1$ norm of a general exponential sum is established in terms of the ratios of the $L_p$ ($p>2$) and $L_2$ norms of dyadic blocks. In particular, for sums of exponents with coefficients whose absolute values are 0 and 1, the estimates are found such that the density and arithmetic properties of the spectrum are simultaneously taken into account. The results obtained are unimprovable in a certain sense.
@article{TM_2001_232_a9,
author = {S. V. Bochkarev},
title = {A~Method for {Estimating} the $L_1$ {Norm} of an {Exponential} {Sum} {Based} on {Arithmetic} {Properties} of the {Spectrum}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {94--101},
year = {2001},
volume = {232},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a9/}
}
TY - JOUR AU - S. V. Bochkarev TI - A Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 94 EP - 101 VL - 232 UR - http://geodesic.mathdoc.fr/item/TM_2001_232_a9/ LA - ru ID - TM_2001_232_a9 ER -
%0 Journal Article %A S. V. Bochkarev %T A Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2001 %P 94-101 %V 232 %U http://geodesic.mathdoc.fr/item/TM_2001_232_a9/ %G ru %F TM_2001_232_a9
S. V. Bochkarev. A Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 94-101. http://geodesic.mathdoc.fr/item/TM_2001_232_a9/
[1] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965 | MR
[2] Garnett Dzh., Ogranichennye analiticheskie funktsi, Mir, M., 1984 | MR | Zbl
[3] Bochkarev S. V., “Ryady Valle Pussena v prostranstvakh BMO, $L_1$ i $H^1(D)$ i multiplikativnye neravenstva”, Tr. MIAN, 210, 1995, 41–64 | MR | Zbl
[4] Bochkarev S. V., “Ob odnom metode otsenki $L_1$-normy eksponentsialnoi summy”, Tr. MIAN, 218, 1997, 74–76 | MR | Zbl
[5] Bochkarev S. V., “Multiplikativnye otsenki $L_1$-normy eksponentsialnykh summ”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Izd-vo AFTs, M., 1999, 57–68 | MR