A~Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 94-101
Voir la notice de l'article provenant de la source Math-Net.Ru
A new lower estimate of the $L_1$ norm of a general exponential sum is established in terms of the ratios of the $L_p$ ($p>2$) and $L_2$ norms of dyadic blocks. In particular, for sums of exponents with coefficients whose absolute values are 0 and 1, the estimates are found such that the density and arithmetic properties of the spectrum are simultaneously taken into account. The results obtained are unimprovable in a certain sense.
@article{TM_2001_232_a9,
author = {S. V. Bochkarev},
title = {A~Method for {Estimating} the $L_1$ {Norm} of an {Exponential} {Sum} {Based} on {Arithmetic} {Properties} of the {Spectrum}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {94--101},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a9/}
}
TY - JOUR AU - S. V. Bochkarev TI - A~Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 94 EP - 101 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_232_a9/ LA - ru ID - TM_2001_232_a9 ER -
%0 Journal Article %A S. V. Bochkarev %T A~Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 2001 %P 94-101 %V 232 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_2001_232_a9/ %G ru %F TM_2001_232_a9
S. V. Bochkarev. A~Method for Estimating the $L_1$ Norm of an Exponential Sum Based on Arithmetic Properties of the Spectrum. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 94-101. http://geodesic.mathdoc.fr/item/TM_2001_232_a9/