On the Compactness of Embeddings of Weighted Sobolev Spaces on a~Domain with Irregular Boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 72-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions are established for the compactness of the embedding of the weighted Sobolev spaces $W_p^s$, $s\in\mathbb N$, into the weighted Lebesgue space $L_q$ for domains with irregular boundaries, in particular, for a cusp domain. The conditions imposed on the domain are formulated in simple geometrical terms (of a degenerate flexible cone).
@article{TM_2001_232_a8,
     author = {O. V. Besov},
     title = {On the {Compactness} of {Embeddings} of {Weighted} {Sobolev} {Spaces} on {a~Domain} with {Irregular} {Boundary}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {72--93},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a8/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - On the Compactness of Embeddings of Weighted Sobolev Spaces on a~Domain with Irregular Boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 72
EP  - 93
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a8/
LA  - ru
ID  - TM_2001_232_a8
ER  - 
%0 Journal Article
%A O. V. Besov
%T On the Compactness of Embeddings of Weighted Sobolev Spaces on a~Domain with Irregular Boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 72-93
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a8/
%G ru
%F TM_2001_232_a8
O. V. Besov. On the Compactness of Embeddings of Weighted Sobolev Spaces on a~Domain with Irregular Boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 72-93. http://geodesic.mathdoc.fr/item/TM_2001_232_a8/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988, 334 pp. | MR

[2] Kondrashov V. I., “O nekotorykh svoistvakh funktsii iz prostranstv $L_p^\nu$”, DAN SSSR, 48:8 (1945), 563–565

[3] Rellich F., “Ein Satz über mittlere Konvergenz”, Nachr. Akad. Wiss. Göttingen, 1930, 30–35 | Zbl

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975 ; 2-е изд., 1996 | MR | Zbl

[5] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985, 415 pp. | MR

[6] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Dokl. RAN, 373:2 (2000), 151–154 | MR | Zbl

[7] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Mat. sb., 192:3 (2001), 3–26 | MR | Zbl

[8] Besov O. V., “Vlozheniya prostranstv differentsiruemykh funktsii peremennoi gladkosti”, Tr. MIAN, 214, 1997, 25–58 | MR | Zbl

[9] Kokilashvili V. M., Gabidzashvili M. A., “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i tselykh funktsii”, DAN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl

[10] Kilpeläinen T., Malý J., “Sobolev inequalities on sets with irregular boundaries”, Ztschr. Anal. und Anwend., 19:2 (2000), 369–380 | MR | Zbl

[11] Stein I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 342 pp. | MR

[12] Labutin D. A., “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Tr. MIAN, 227, 1999, 170–179 | MR | Zbl

[13] Labutin D. A., “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Tr. MIAN, 218–222 | Zbl

[14] Besov O. V., “O kompaktnosti vlozhenii vesovykh prostranstv Soboleva na oblasti s neregulyarnoi granitsei”, Dokl. RAN, 376:6 (2001) | MR | Zbl