Norm-Generating Pseudodifferential Operators in the Spaces $W_p^s(\mathbb R^n)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 58-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of operators $A$ is analyzed in the Sobolev–Slobodetskii spaces $W_p^s$ on $\mathbb R^n$, $s\in\mathbb R_+$, such that the corresponding equation $Au=f$ is uniquely solvable for any right-hand side. The operators constituting this class—the so-called norm-generating operators—are analogues of known operators of the $p$-Laplacian type in the Sobolev spaces $W_p^s$, $s\in \mathbb N$. In the case of a Hilbert space $W_2^s$, the operators considered are ordinary linear pseudodifferential operators. In the general case when $p\ne 2$ and $s\notin\mathbb N$, the operators are nonlinear and nonlocal and define a one-to-one mapping of the space $W_p^s$ onto the adjoint space $W_{p'}^{-s}$. In addition to the analysis of the properties of these operators, examples of norm-generating operators in $W_p^s$ are presented that specify a more complicated structure of the mapping (that is not one-to-one).
@article{TM_2001_232_a7,
     author = {K. O. Besov},
     title = {Norm-Generating {Pseudodifferential} {Operators} in the {Spaces} $W_p^s(\mathbb R^n)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {58--71},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a7/}
}
TY  - JOUR
AU  - K. O. Besov
TI  - Norm-Generating Pseudodifferential Operators in the Spaces $W_p^s(\mathbb R^n)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 58
EP  - 71
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a7/
LA  - ru
ID  - TM_2001_232_a7
ER  - 
%0 Journal Article
%A K. O. Besov
%T Norm-Generating Pseudodifferential Operators in the Spaces $W_p^s(\mathbb R^n)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 58-71
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a7/
%G ru
%F TM_2001_232_a7
K. O. Besov. Norm-Generating Pseudodifferential Operators in the Spaces $W_p^s(\mathbb R^n)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 58-71. http://geodesic.mathdoc.fr/item/TM_2001_232_a7/

[1] Dubinskii Yu. A., Pokhozhaev S. I., “Ob odnom klasse operatorov i razreshimosti kvazilineinykh differentsialnykh uravnenii”, Mat. sb., 72:2 (1967), 226–236 | MR

[2] Dubinskii Yu. A., “Kvazilineinye ellipticheskie i parabolicheskie uravneniya lyubogo poryadka”, UMN, 23:1 (1968), 45–90 | MR | Zbl

[3] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[4] Slobodetskii L. N., “Prostranstva S. L. Soboleva drobnogo poryadka i ikh prilozheniya k kraevym zadacham dlya differentsialnogo uravneniya v chastnykh proizvodnykh”, DAN SSSR, 118:2 (1958), 243–246 | Zbl

[5] Gagliardo E., “Caratterizzazione delle trace sulla frontiera relative ad alcune classi di funzioni in $n$ variabili”, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–305 | MR | Zbl

[6] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[7] Muramatu T., “On Besov spaces and Sobolev spaces of generalized functions defined on general region”, Publ. Res. Inst. Math. Sci. Kyoto Univ., 9:2 (1974), 325–396 | DOI | MR | Zbl

[8] Teilor M., Psevdodifferentsialnye operatory, Mir, M., 1985 | MR

[9] Burbaki N., Topologicheskie vektornye prostranstva, Izd-vo inostr. lit., M., 1959

[10] Dei M. M., Normirovannye lineinye prostranstva, Izd-vo inostr. lit., M., 1961 | MR

[11] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, Izd-vo inostr. lit., M., 1948