Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 45-57

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem about a polynomial of least deviation from zero on a multidimensional sphere is solved in some special cases. For known spherical configurations, a family of subspaces of harmonic polynomials is described for which the Chebyshev-type cubature formulas on the sphere are exact.
@article{TM_2001_232_a6,
     author = {N. N. Andreev and V. A. Yudin},
     title = {Polynomials of {Least} {Deviation} from {Zero} and {Chebyshev-Type} {Cubature} {Formulas}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a6/}
}
TY  - JOUR
AU  - N. N. Andreev
AU  - V. A. Yudin
TI  - Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 45
EP  - 57
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a6/
LA  - ru
ID  - TM_2001_232_a6
ER  - 
%0 Journal Article
%A N. N. Andreev
%A V. A. Yudin
%T Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 45-57
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a6/
%G ru
%F TM_2001_232_a6
N. N. Andreev; V. A. Yudin. Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 45-57. http://geodesic.mathdoc.fr/item/TM_2001_232_a6/