Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 45-57
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem about a polynomial of least deviation from zero on a multidimensional sphere is solved in some special cases. For known spherical configurations, a family of subspaces of harmonic polynomials is described for which the Chebyshev-type cubature formulas on the sphere are exact.
@article{TM_2001_232_a6,
author = {N. N. Andreev and V. A. Yudin},
title = {Polynomials of {Least} {Deviation} from {Zero} and {Chebyshev-Type} {Cubature} {Formulas}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {45--57},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a6/}
}
TY - JOUR AU - N. N. Andreev AU - V. A. Yudin TI - Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 45 EP - 57 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_232_a6/ LA - ru ID - TM_2001_232_a6 ER -
N. N. Andreev; V. A. Yudin. Polynomials of Least Deviation from Zero and Chebyshev-Type Cubature Formulas. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 45-57. http://geodesic.mathdoc.fr/item/TM_2001_232_a6/