On Integral Operators with Variable Limits of Integration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317
Voir la notice de l'article provenant de la source Math-Net.Ru
Integral Hardy-type operators with variable limits of integration are studied. For these operators, the boundedness and compactness criteria are obtained and applications are considered to the embeddings of the weighted Sobolev spaces on a half-axis into the Lebesgue spaces.
@article{TM_2001_232_a24,
author = {V. D. Stepanov and E. P. Ushakova},
title = {On {Integral} {Operators} with {Variable} {Limits} of {Integration}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {298--317},
publisher = {mathdoc},
volume = {232},
year = {2001},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a24/}
}
TY - JOUR AU - V. D. Stepanov AU - E. P. Ushakova TI - On Integral Operators with Variable Limits of Integration JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2001 SP - 298 EP - 317 VL - 232 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2001_232_a24/ LA - ru ID - TM_2001_232_a24 ER -
V. D. Stepanov; E. P. Ushakova. On Integral Operators with Variable Limits of Integration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317. http://geodesic.mathdoc.fr/item/TM_2001_232_a24/