On Integral Operators with Variable Limits of Integration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral Hardy-type operators with variable limits of integration are studied. For these operators, the boundedness and compactness criteria are obtained and applications are considered to the embeddings of the weighted Sobolev spaces on a half-axis into the Lebesgue spaces.
@article{TM_2001_232_a24,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {On {Integral} {Operators} with {Variable} {Limits} of {Integration}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {298--317},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a24/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - On Integral Operators with Variable Limits of Integration
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 298
EP  - 317
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a24/
LA  - ru
ID  - TM_2001_232_a24
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T On Integral Operators with Variable Limits of Integration
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 298-317
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a24/
%G ru
%F TM_2001_232_a24
V. D. Stepanov; E. P. Ushakova. On Integral Operators with Variable Limits of Integration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317. http://geodesic.mathdoc.fr/item/TM_2001_232_a24/