On Integral Operators with Variable Limits of Integration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral Hardy-type operators with variable limits of integration are studied. For these operators, the boundedness and compactness criteria are obtained and applications are considered to the embeddings of the weighted Sobolev spaces on a half-axis into the Lebesgue spaces.
@article{TM_2001_232_a24,
     author = {V. D. Stepanov and E. P. Ushakova},
     title = {On {Integral} {Operators} with {Variable} {Limits} of {Integration}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {298--317},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a24/}
}
TY  - JOUR
AU  - V. D. Stepanov
AU  - E. P. Ushakova
TI  - On Integral Operators with Variable Limits of Integration
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 298
EP  - 317
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a24/
LA  - ru
ID  - TM_2001_232_a24
ER  - 
%0 Journal Article
%A V. D. Stepanov
%A E. P. Ushakova
%T On Integral Operators with Variable Limits of Integration
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 298-317
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a24/
%G ru
%F TM_2001_232_a24
V. D. Stepanov; E. P. Ushakova. On Integral Operators with Variable Limits of Integration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 298-317. http://geodesic.mathdoc.fr/item/TM_2001_232_a24/

[1] Martín-Reyes F. J., Sawyer E., “Weighted inequalities for Riemann–Liouville fractional integrals of order one and greater”, Proc. Amer. Math. Soc., 106 (1989), 727–733 | DOI | MR | Zbl

[2] Bloom S., Kerman R., “Weighted norm inequalities for operators of Hardy type”, Proc. Amer. Math. Soc., 113 (1991), 135–141 | DOI | MR | Zbl

[3] Oinarov R., “Dvustoronnie otsenki normy nekotorykh klassov integralnykh operatorov”, Tr. MIAN, 204, 1993, 240–250 | MR | Zbl

[4] Stepanov V. D., “Weighted norm inequalities for integral operators and related topics”, Nonlinear analysis, function spaces and applications, 5, Prague, 1994, 139–175 | MR | Zbl

[5] Lomakina E. N., Stepanov V. D., “On the Hardy-type integral operators in Banach function spaces”, Publ. Mat., 42:1 (1998), 165–194 | MR | Zbl

[6] Mazja W. G., Einbettungssätze für Sobolewsche Räume, Teubner-Texte Math., 21, Leipzig, 1979, 204 S | MR

[7] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo LGU, L., 1985, 415 pp. | MR

[8] Edmunds D. E., Stepanov V. D., “On the singular numbers of certain Volterra integral operators”, J. Funct. Anal., 134 (1995), 222–246 | DOI | MR | Zbl

[9] Stepanov V. D., “On the lower bounds for Schatten–von Neumann norms of certain Volterra integral operators”, J. London Math. Soc., 61 (2000), 905–922 | DOI | MR | Zbl

[10] Heinig H. P., Sinnamon G., “Mapping properties of integral averaging operators”, Stud. Math., 129 (1998), 157–177 | MR | Zbl

[11] Gogatishvili A., Lang J., “The generalized Hardy operators with kernel and variable integral limits in Banach function spaces”, J. Inequal. and Appl., 4 (1999), 1–16 | DOI | MR | Zbl

[12] Chen T., Sinnamon G., Generalized Hardy operators and normalizing measures, Preprint Univ. Western Ontario, 1999 | MR

[13] Heinig H. P., “Weighted norm inequalities for certain integral operators, II”, Proc. Amer. Math. Soc., 95 (1985), 387–395 | DOI | MR | Zbl

[14] Batuev E. N., Stepanov V. D., Vesovye neravenstva tipa Khardi, Preprint VTs DVNTs AN SSSR, RZhMat 1987, 6B69, Vladivostok, 1987, 22 pp.

[15] Batuev E. N., Stepanov V. D., “O vesovykh neravenstvakh tipa Khardi”, Sib. mat. zhurn., 30 (1989), 13–22 | MR | Zbl

[16] Mazya V. G., “O nekotorykh integralnykh neravenstvakh dlya funktsii mnogikh peremennykh”, Problemy matematicheskogo analiza, no. 3, L., 1972, 33–68

[17] Oinarov R., “On weighted norm inequalities with three weights”, J. London Math. Soc., 48 (1993), 103–116 | DOI | MR | Zbl

[18] Maz'ya V., Netrusov Yu., “Some counterexamples for the theory of Sobolev spaces on bad domains”, Pot. Anal., 4 (1995), 47–65 | DOI | MR

[19] Kudryavtsev L. D., Nikolskii S. M., “Prostranstva differentsiruemykh funktsii mnogikh peremennykh i teoremy vlozheniya”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 26, VINITI, M., 1988, 5–157 | MR

[20] Nikolskii S. M., Lizorkin P. I., Miroshin N. V., “Vesovye funktsionalnye prostranstva i ikh prilozheniya k issledovaniyu kraevykh zadach dlya vyrozhdayuschikhsya ellipticheskikh uravnenii”, Izv. vuzov. Matematika, 1988, no. 8, 4–30 | MR

[21] Besov O. V., “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Dokl. RAN, 373:2 (2000), 151–154 | MR | Zbl

[22] Sinnamon G., Stepanov V. D., “The weighted Hardy inequality: New proofs and the case $p=1$”, J. London Math. Soc., 54 (1996), 89–101 | MR | Zbl