Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 289-297

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation between polynomial approximations of functions and their generalized $m$th moduli of smoothness defined with the use of a two-parameter family of nonsymmetric generalized translation operators is examined.
@article{TM_2001_232_a23,
     author = {M. K. Potapov},
     title = {Direct and {Inverse} {Theorems} of {Approximation} {Theory} for the $m$th {Generalized} {Modulus} of {Smoothness}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {289--297},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a23/}
}
TY  - JOUR
AU  - M. K. Potapov
TI  - Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 289
EP  - 297
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a23/
LA  - ru
ID  - TM_2001_232_a23
ER  - 
%0 Journal Article
%A M. K. Potapov
%T Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 289-297
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a23/
%G ru
%F TM_2001_232_a23
M. K. Potapov. Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 289-297. http://geodesic.mathdoc.fr/item/TM_2001_232_a23/