Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 289-297.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation between polynomial approximations of functions and their generalized $m$th moduli of smoothness defined with the use of a two-parameter family of nonsymmetric generalized translation operators is examined.
@article{TM_2001_232_a23,
     author = {M. K. Potapov},
     title = {Direct and {Inverse} {Theorems} of {Approximation} {Theory} for the $m$th {Generalized} {Modulus} of {Smoothness}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {289--297},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a23/}
}
TY  - JOUR
AU  - M. K. Potapov
TI  - Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 289
EP  - 297
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a23/
LA  - ru
ID  - TM_2001_232_a23
ER  - 
%0 Journal Article
%A M. K. Potapov
%T Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 289-297
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a23/
%G ru
%F TM_2001_232_a23
M. K. Potapov. Direct and Inverse Theorems of Approximation Theory for the $m$th Generalized Modulus of Smoothness. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 289-297. http://geodesic.mathdoc.fr/item/TM_2001_232_a23/

[1] Pawelke S., “Ein Satz von Jackenschen Typ für algebraische Polynome”, Acta Sci. Math., 33:3–4 (1972), 323–336 | MR | Zbl

[2] Potapov M. K., “O strukturnykh i konstruktivnykh kharakteristikakh nekotorykh klassov funktsii”, Tr. MIAN, 131, 1974, 211–231 | MR | Zbl

[3] Potapov M. K., “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Tr. MIAN, 134, 1975, 260–277 | MR | Zbl

[4] Butzer P., Stens R., Wehrens M., “Higher order moduli of continiuty based on the Jacobi translation operator and best approximation”, C. R. Math. Rend. Acad. Sci. Canada, 1980, no. 2, 83–87 | MR

[5] Potapov M. K., “O priblizhenii algebraicheskimi mnogochlenami v integralnoi metrike s vesom Yakobi”, Vestn. MGU. Matematika. Mekhanika, 1983, no. 3, 43–52 | MR | Zbl

[6] Potapov M. K., Fedorov V. M., “O teoremakh Dzheksona dlya obobschennogo modulya gladkosti”, Tr. MIAN, 172, 1985, 291–298 | MR | Zbl

[7] Potapov M. K., “The operators of generalized translation in the approximation theory”, Proc. II Math. Conf. Pristina, 1997, 27–36 | MR | Zbl

[8] Potapov M. K., Kazimirov G. N., “O priblizhenii algebraicheskimi mnogochlenami funktsii, imeyuschikh dannyi poryadok $k$-go obobschennogo modulya gladkosti”, Mat. zametki, 63:3 (1998), 425–436 | MR | Zbl

[9] Potapov M. K., Berisha F. M., “O svyazi mezhdu nailuchshimi priblizheniyami algebraicheskimi mnogochlenami i $r$-m obobschennym modulem gladkosti”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Izd-vo AFTs, M., 1999, 187–213 | MR

[10] Potapov M. K., “O svoistvakh i o primenenii v teorii priblizhenii odnogo semeistva operatorov obobschennogo sdviga”, Mat. zametki, 69:3 (2001), 412–426 | MR | Zbl

[11] Khalilova B. A., “O nekotorykh otsenkakh dlya polinomov”, Izv. AN AzSSR. Ser. fiz.-tekh. nauk, 1974, no. 2, 46–55 | Zbl