On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 223-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonexistence of solutions to certain semilinear differential inequalities in a bounded domain is established. A model problem for such inequalities is $-\Delta u\ge |u|^q/|x|^\sigma$ ($\sigma \ge 2$) in a ball $B_R$. Similar evolution inequalities and fourth-order problems with the operator $\Delta ^2$ are analyzed. The proofs are based on the method of test functions.
@article{TM_2001_232_a18,
     author = {G. G. Laptev},
     title = {On the {Absence} of {Solutions} for {a~Class} of {Singular} {Semilinear} {Differential} {Inequalities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {223--235},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a18/}
}
TY  - JOUR
AU  - G. G. Laptev
TI  - On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 223
EP  - 235
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a18/
LA  - ru
ID  - TM_2001_232_a18
ER  - 
%0 Journal Article
%A G. G. Laptev
%T On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 223-235
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a18/
%G ru
%F TM_2001_232_a18
G. G. Laptev. On the Absence of Solutions for a~Class of Singular Semilinear Differential Inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 223-235. http://geodesic.mathdoc.fr/item/TM_2001_232_a18/

[1] Brezis H., Cabré X., “Some simple nonlinear PDE's without solutions”, Boll. Unione Mat. Ital. B., 8 (1998), 223–262 | MR | Zbl

[2] Galaktionov V. A., Levine H. A., “A general approach to critical Fujita exponents in nonlinear parabolic problems”, Nonlin. Anal., 34:7 (1998), 1005–1027 | DOI | MR | Zbl

[3] Mitidieri E., Pokhozhaev S. I., “Otsutstvie slabykh reshenii dlya nekotorykh vyrozhdennykh i singulyarnykh giperbolicheskikh zadach v $\mathbb{R}_+^{n+1}$”, Trudy MIAN, 248–267 | MR | Zbl

[4] Konkov A. A., “O neotritsatelnykh resheniyakh kvazilineinykh ellipticheskikh neravenstv”, Izv. RAN. Ser. mat., 63:2 (1999), 41–126 | MR

[5] Galaktionov V. A., Pohozaev S. I., “Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators”, Indiana Univ. Math. J. (to appear) | MR

[6] Kondratev V. A., Eidelman S. D., “O polozhitelnykh resheniyakh kvazilineinykh ellipticheskikh uravnenii vtorogo poryadka”, Dokl. RAN, 334:4 (1994), 427–428 | MR | Zbl

[7] Kurta V. V., “Ob otsutstvii polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, Tr. MIAN, 227, 1999, 162–169 | MR | Zbl

[8] Mitidieri E., Pohozaev S. I., “Nonexistence of weak solutions for some degenerate elliptic and parabolic problems on $\mathbb{R}^n$”, J. Evolution Equat., 1:2 (2001) | MR | Zbl

[9] Galaktionov V. A., Pohozaev S. I., Blow-up, critical exponents and asymptotic spectra for nonlinear hyperbolic equations, Preprint Math. 00/10. Univ. Bath (UK), 2000

[10] Pohozaev S. I., Veron L., Blow-up results for nonlinear hyperbolic inequalities, Preprint No 181/99. Univ. Tours, 1999 | MR

[11] Kurta V. V., “K voprosu ob otsutstvii tselykh polozhitelnykh reshenii u polulineinykh ellipticheskikh uravnenii”, UMN, 50:4 (1995), 127

[12] Kurta V. V., Nekotorye voprosy kachestvennoi teorii nelineinykh differentsialnykh uravnenii vtorogo poryadka, Dis. $\dots$ doktora fiz.-mat. nauk, MIAN, M., 1994, 323 pp.

[13] Mitidieri E., Pokhozhaev S. I., “Otsutstvie globalnykh polozhitelnykh reshenii kvazilineinykh ellipticheskikh neravenstv”, Dokl. RAN, 359:4 (1998), 456–460 | MR | Zbl

[14] Mitidieri E., Pokhozhaev S. I., “Otsutstvie polozhitelnykh reshenii dlya kvazilineinykh ellipticheskikh zadach v $\mathbb{R}^N$”, Tr. MIAN, 227, 1999, 192–222 | MR | Zbl

[15] Pokhozhaev S. I., Tesei A., “Polnoe razrushenie reshenii nelineinykh ellipticheskikh neravenstv”, Dif. uravneniya (to appear)

[16] Pokhozhaev S. I., Tesei A., “Mgnovennoe razrushenie reshenii nelineinykh parabolicheskikh i giperbolicheskikh neravenstv”, Dif. uravneniya (to appear)

[17] Bidaut-Véron M.-F., Pohozaev S., “Nonexistence results and estimates for some nonlinear elliptic problems”, J. Anal. Math. Jerusalem (to appear) | MR

[18] Galakhov E. I., “Some nonexistence results for quasilinear elliptic problems”, J. Math. Anal. and Appl., 252:1 (2000), 256–277 | DOI | MR | Zbl

[19] Egorov Y. V., Galaktionov V. A., Kondratiev V. A., Pohozaev S. I., “On the necessary conditions of global existence of solutions to a quasilinear inequality in the half-space”, C. R. Acad. Sci. Paris. Sér. 1: Math., 330:2 (2000), 93–98 | MR | Zbl

[20] Mitidieri E., Pokhozhaev S. I., Apriornye otsenki i otsutstvie reshenii dlya nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh, Tr. MIAN, 234, Nauka, M., 2001 | MR