Asymptotics of Solutions to Differential Equations near Singular Points
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 194-217

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained under which all solutions to a normal system of equations asymptotically or strongly asymptotically approximate to polynomials as the argument tends to infinity. For the system of the form $L\mathbf x=\mathbf f$, where $L$ is a first-order linear differential operator, conditions are found under which all its solutions $L$-asymptotically approximate to the solutions of the homogeneous system $L\mathbf x=\mathbf 0$ as the argument tends to the singular point of the former system.
@article{TM_2001_232_a16,
     author = {L. D. Kudryavtsev},
     title = {Asymptotics of {Solutions} to {Differential} {Equations} near {Singular} {Points}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {194--217},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a16/}
}
TY  - JOUR
AU  - L. D. Kudryavtsev
TI  - Asymptotics of Solutions to Differential Equations near Singular Points
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 194
EP  - 217
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a16/
LA  - ru
ID  - TM_2001_232_a16
ER  - 
%0 Journal Article
%A L. D. Kudryavtsev
%T Asymptotics of Solutions to Differential Equations near Singular Points
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 194-217
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a16/
%G ru
%F TM_2001_232_a16
L. D. Kudryavtsev. Asymptotics of Solutions to Differential Equations near Singular Points. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 194-217. http://geodesic.mathdoc.fr/item/TM_2001_232_a16/