Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 115-143

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp three-weight estimates are established for the norms of restrictions of generalized Hardy operators onto the cones of functions from Lebesgue spaces that are monotone on a positive half-axis. The necessary and sufficient conditions are obtained for the boundedness of the norms under minimal a priori assumptions about the measures involved in the definitions of Hardy operators and weighted Lebesgue spaces. The uniformity of the estimates with respect to the parameters of the problem is observed.
@article{TM_2001_232_a11,
     author = {M. L. Gol'dman},
     title = {Sharp {Estimates} for the {Norms} of {Hardy-Type} {Operators} on the {Cones} of {Quasimonotone} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {115--143},
     publisher = {mathdoc},
     volume = {232},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2001_232_a11/}
}
TY  - JOUR
AU  - M. L. Gol'dman
TI  - Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2001
SP  - 115
EP  - 143
VL  - 232
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2001_232_a11/
LA  - ru
ID  - TM_2001_232_a11
ER  - 
%0 Journal Article
%A M. L. Gol'dman
%T Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2001
%P 115-143
%V 232
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2001_232_a11/
%G ru
%F TM_2001_232_a11
M. L. Gol'dman. Sharp Estimates for the Norms of Hardy-Type Operators on the Cones of Quasimonotone Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Function spaces, harmonic analysis, and differential equations, Tome 232 (2001), pp. 115-143. http://geodesic.mathdoc.fr/item/TM_2001_232_a11/