An Ergodic Theorem for the Action of a~Free Semigroup
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 119-133
Voir la notice de l'article provenant de la source Math-Net.Ru
An individual ergodic theorem for the action of a free semigroup is proved under the assumption that the measure is stationary. The proof involves the constructions of the associated stationary Markov process and of the skew shift.
@article{TM_2000_231_a4,
author = {R. I. Grigorchuk},
title = {An {Ergodic} {Theorem} for the {Action} of {a~Free} {Semigroup}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {119--133},
publisher = {mathdoc},
volume = {231},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a4/}
}
R. I. Grigorchuk. An Ergodic Theorem for the Action of a~Free Semigroup. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 119-133. http://geodesic.mathdoc.fr/item/TM_2000_231_a4/