Free Products of Finite Groups and Groups of Finitely Automatic Permutations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 323-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

A constructive proof is given to the isomorphic embeddability of a free product of a finite number of finite groups into a group of finitely automatic permutations over an alphabet in which the number of symbols is equal to the maximal order of the free factors.
@article{TM_2000_231_a11,
     author = {A. S. Oliinyk},
     title = {Free {Products} of {Finite} {Groups} and {Groups} of {Finitely} {Automatic} {Permutations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {323--331},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a11/}
}
TY  - JOUR
AU  - A. S. Oliinyk
TI  - Free Products of Finite Groups and Groups of Finitely Automatic Permutations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 323
EP  - 331
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a11/
LA  - ru
ID  - TM_2000_231_a11
ER  - 
%0 Journal Article
%A A. S. Oliinyk
%T Free Products of Finite Groups and Groups of Finitely Automatic Permutations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 323-331
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a11/
%G ru
%F TM_2000_231_a11
A. S. Oliinyk. Free Products of Finite Groups and Groups of Finitely Automatic Permutations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 323-331. http://geodesic.mathdoc.fr/item/TM_2000_231_a11/

[1] Brunner A. M., Sidki S., “The generation of $GL(n,\mathbb {Z})$ by finite state automata”, Intern. J. Alg. and Comput., 8 (1998), 127–139 | DOI | MR | Zbl

[2] Grigorchuk R. I., “Stepeni rosta konechno porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR

[3] Suschanskii V.I ., “Grupi skinchenno avtomatnikh pidstanovok”, Dop. NAN Ukr., 1999, no. 2, 29–32

[4] Olijnyk A., “Free products of $C_2$ as groups of finitely automatic permutations”, Vopr. algebry, 14 (1999), 158–165

[5] Oliinik A., “Vilni abelevi grupi skinchennikh avtomativ”, Visn. Kiïv. univ. Fiz.-mat. nauki, 1999, no. 1, 74–77 | MR

[6] Olijnyk A., “Free products of finite groups and finite state automorphisms of rooted tree”, Second Intern. Alg. Conf. Ukraine, Abstr., Vinnytsa, 1999, 34

[7] Gécseg F., Peák I., Algebraic theory of automata, Acad. Kiadó, Budapest, 1972, 326 pp. | MR

[8] Lindon R., Shupp P., Kombinatornaya teoriya grupp, per. s angl., Mir, M., 1980, 448 pp. | MR