Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2000_231_a11, author = {A. S. Oliinyk}, title = {Free {Products} of {Finite} {Groups} and {Groups} of {Finitely} {Automatic} {Permutations}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {323--331}, publisher = {mathdoc}, volume = {231}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a11/} }
TY - JOUR AU - A. S. Oliinyk TI - Free Products of Finite Groups and Groups of Finitely Automatic Permutations JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 323 EP - 331 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2000_231_a11/ LA - ru ID - TM_2000_231_a11 ER -
A. S. Oliinyk. Free Products of Finite Groups and Groups of Finitely Automatic Permutations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 323-331. http://geodesic.mathdoc.fr/item/TM_2000_231_a11/
[1] Brunner A. M., Sidki S., “The generation of $GL(n,\mathbb {Z})$ by finite state automata”, Intern. J. Alg. and Comput., 8 (1998), 127–139 | DOI | MR | Zbl
[2] Grigorchuk R. I., “Stepeni rosta konechno porozhdennykh grupp i teoriya invariantnykh srednikh”, Izv. AN SSSR. Ser. mat., 48:5 (1984), 939–985 | MR
[3] Suschanskii V.I ., “Grupi skinchenno avtomatnikh pidstanovok”, Dop. NAN Ukr., 1999, no. 2, 29–32
[4] Olijnyk A., “Free products of $C_2$ as groups of finitely automatic permutations”, Vopr. algebry, 14 (1999), 158–165
[5] Oliinik A., “Vilni abelevi grupi skinchennikh avtomativ”, Visn. Kiïv. univ. Fiz.-mat. nauki, 1999, no. 1, 74–77 | MR
[6] Olijnyk A., “Free products of finite groups and finite state automorphisms of rooted tree”, Second Intern. Alg. Conf. Ukraine, Abstr., Vinnytsa, 1999, 34
[7] Gécseg F., Peák I., Algebraic theory of automata, Acad. Kiadó, Budapest, 1972, 326 pp. | MR
[8] Lindon R., Shupp P., Kombinatornaya teoriya grupp, per. s angl., Mir, M., 1980, 448 pp. | MR