A~Theory of Almost Algebraic Poincar\'e Complexes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 294-322.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theories of almost acyclic chain complexes and of almost algebraic Poincaré complexes are constructed. These theories can be used to obtain signature invariants of combinatorial manifolds with arbitrary finite-dimensional vector bundles.
@article{TM_2000_231_a10,
     author = {A. S. Mishchenko},
     title = {A~Theory of {Almost} {Algebraic} {Poincar\'e} {Complexes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {294--322},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a10/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - A~Theory of Almost Algebraic Poincar\'e Complexes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 294
EP  - 322
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a10/
LA  - ru
ID  - TM_2000_231_a10
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T A~Theory of Almost Algebraic Poincar\'e Complexes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 294-322
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a10/
%G ru
%F TM_2000_231_a10
A. S. Mishchenko. A~Theory of Almost Algebraic Poincar\'e Complexes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 294-322. http://geodesic.mathdoc.fr/item/TM_2000_231_a10/

[1] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. 1. Ratsionalnye invarianty”, Izv. AN SSSR. Ser. mat., 34:3 (1970), 501–514

[2] Mischenko A. S., Solovev Yu. P., “Predstavleniya banakhovykh algebr i formuly tipa Khirtsebrukha”, Mat. sb., 111:2 (1980), 209–226 | MR

[3] Roe J., Index theory, coarse geometry, and topology of manifolds, CBMS Reg. Conf. Ser. Math., 90, Amer. Math. Soc., Providence, R. I., 1996, 62 | MR | Zbl

[4] Gromov M. Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, v. II (New Brunswick, NJ, 1993), Progr. Math., 132, Birkhäuser Boston, Boston, MA, 1996, 1–213 | MR | Zbl

[5] Manuilov V. M., Mishchenko A. S., Relations between asymptotic and Fredholm representations, Preprint IHES, 1997, 16 pp.

[6] Mishchenko A. S., Mohammad N., “Asymptotical representations of discrete groups”, Lie groups and Lie algebras. Their representations, generalizations and applications, Math. and Appl., 433, Kluwer Acad. Publ., Dordrecht–Boston–London, 1998, 299–312 | MR | Zbl

[7] Manuilov V. M., Mischenko A. S., “Asimptoticheskie i fredgolmovy predstavleniya diskretnykh grupp”, Mat. sb., 189:10 (1998), 53–74 | MR | Zbl

[8] Mishchenko A. S., “Local combinatorial Hirzebruch formula”, Intern. Congr. Math., Abstr. Short Commun. and Poster Sess. (Berlin, Aug. 18–27, 1998), Berlin, 1998, 94 | MR

[9] Mischenko A. S., “Lokalnaya kombinatornaya formula Khirtsebrukha”, Algebra, geometriya i topologiya, Mezhdunar. konf., posv. devyanostoletiyu so dnya rozhdeniya L. S. Pontryagina. Tez. dokl. (Moskva, 1998), MGU, M., 1998., 119–121

[10] Mishchenko A. S., Theory of almost algebraic Poincaré complexes and local combinatorial Hirzebruch formula, Preprint IHES/M/98/84, 1998, 29 pp. | MR

[11] Mischenko A. S., “Lokalnaya kombinatornaya formula Khirtsebrukha”, Tr. MIAN, 224, 1999, 249–263