Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 46-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integrable geodesic flows are studied on suspensions of toric automorphisms. It is shown that, for linear automorphisms with real spectrum, such flows always exist. Their entropy characteristics are investigated. In particular, in the case of hyperbolic automorphisms, we describe explicitly a closed invariant subset on which the topological entropy of the geodesic flow is positive.
@article{TM_2000_231_a1,
     author = {A. V. Bolsinov and I. A. Taimanov},
     title = {Integrable {Geodesic} {Flows} on the {Suspensions} of {Toric} {Automorphisms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {46--63},
     publisher = {mathdoc},
     volume = {231},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a1/}
}
TY  - JOUR
AU  - A. V. Bolsinov
AU  - I. A. Taimanov
TI  - Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 46
EP  - 63
VL  - 231
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_231_a1/
LA  - ru
ID  - TM_2000_231_a1
ER  - 
%0 Journal Article
%A A. V. Bolsinov
%A I. A. Taimanov
%T Integrable Geodesic Flows on the Suspensions of Toric Automorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 46-63
%V 231
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_231_a1/
%G ru
%F TM_2000_231_a1
A. V. Bolsinov; I. A. Taimanov. Integrable Geodesic Flows on the Suspensions of Toric Automorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 46-63. http://geodesic.mathdoc.fr/item/TM_2000_231_a1/

[1] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR

[2] Bolsinov A. V., Taimanov I. A., Integrable geodesic flows with positive topological entropy, preprint math.DG/9905078, 1999 | MR

[3] Butler L., A new class of homogeneous manifolds with Liouville-integrable geodesic flows, Math. Preprint #1998-8, Queen's Univ. Kingston, Kingston (Canada), nov. 1998, submitted to J. Diff. Geom. | MR

[4] Dinaburg E. I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR. Ser. mat., 35:2 (1971), 324–366 | MR | Zbl

[5] Katok A., “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Publ. IHES, 51 (1980), 137–173 | MR | Zbl

[6] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. and Appl., 54, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl

[7] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. mat., 46:5 (1982), 994–1010 | MR

[8] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl

[9] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl

[10] Leeb B., “Harmonic functions along Brownian balls and the Liouville property for solvable Lie groups”, Math. Ann., 296 (1993), 577–584 | DOI | MR | Zbl

[11] Paternain G. P., “On the topology of manifolds with completely integrable geodesic flows”, Ergod. Th. and Dyn. Syst., 12 (1992), 109–121 | MR

[12] Paternain G. P., “On the topology of manifolds with completely integrable geodesic flows. II”, J. Geom. and Phys., 13 (1994), 289–298 | DOI | MR | Zbl

[13] Sinai Ya. G., Introduction to ergodic theory, Math. Notes, 18, Princeton Univ. Press, Princeton, 1976 | MR

[14] Taimanov I. A., “Topologicheskie prepyatstviya k integriruemosti geodezicheskikh potokov na neodnosvyaznykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 429–435 | MR

[15] Taimanov I. A., “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Mat. zametki, 44:2 (1988), 283–284 | MR

[16] Taimanov I. A., “Topologiya rimanovykh mnogoobrazii s integriruemymi geodezicheskimi potokami”, Tr. MIAN, 205, 1994, 150–163 | Zbl

[17] Troyanov M., “L'horizon de SOL”, Expo. Math., 16:5 (1998), 441–479 | MR | Zbl