Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_2000_231_a1, author = {A. V. Bolsinov and I. A. Taimanov}, title = {Integrable {Geodesic} {Flows} on the {Suspensions} of {Toric} {Automorphisms}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {46--63}, publisher = {mathdoc}, volume = {231}, year = {2000}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_2000_231_a1/} }
TY - JOUR AU - A. V. Bolsinov AU - I. A. Taimanov TI - Integrable Geodesic Flows on the Suspensions of Toric Automorphisms JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 46 EP - 63 VL - 231 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2000_231_a1/ LA - ru ID - TM_2000_231_a1 ER -
A. V. Bolsinov; I. A. Taimanov. Integrable Geodesic Flows on the Suspensions of Toric Automorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems, automata, and infinite groups, Tome 231 (2000), pp. 46-63. http://geodesic.mathdoc.fr/item/TM_2000_231_a1/
[1] Bolsinov A. V., Fomenko A. T., Vvedenie v topologiyu integriruemykh gamiltonovykh sistem, Nauka, M., 1997 | MR
[2] Bolsinov A. V., Taimanov I. A., Integrable geodesic flows with positive topological entropy, preprint math.DG/9905078, 1999 | MR
[3] Butler L., A new class of homogeneous manifolds with Liouville-integrable geodesic flows, Math. Preprint #1998-8, Queen's Univ. Kingston, Kingston (Canada), nov. 1998, submitted to J. Diff. Geom. | MR
[4] Dinaburg E. I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR. Ser. mat., 35:2 (1971), 324–366 | MR | Zbl
[5] Katok A., “Lyapunov exponents, entropy and periodic orbits for diffeomorphisms”, Publ. IHES, 51 (1980), 137–173 | MR | Zbl
[6] Katok A., Hasselblatt B., Introduction to the modern theory of dynamical systems, Encycl. Math. and Appl., 54, Cambridge Univ. Press, Cambridge, 1997 | MR | Zbl
[7] Kolokoltsov V. N., “Geodezicheskie potoki na dvumernykh mnogoobraziyakh s dopolnitelnym polinomialnym po skorostyam pervym integralom”, Izv. AN SSSR. Ser. mat., 46:5 (1982), 994–1010 | MR
[8] Kozlov V. V., “Topologicheskie prepyatstviya k integriruemosti naturalnykh mekhanicheskikh sistem”, DAN SSSR, 249:6 (1979), 1299–1302 | MR | Zbl
[9] Kozlov V. V., “Integriruemost i neintegriruemost v gamiltonovoi mekhanike”, UMN, 38:1 (1983), 3–67 | MR | Zbl
[10] Leeb B., “Harmonic functions along Brownian balls and the Liouville property for solvable Lie groups”, Math. Ann., 296 (1993), 577–584 | DOI | MR | Zbl
[11] Paternain G. P., “On the topology of manifolds with completely integrable geodesic flows”, Ergod. Th. and Dyn. Syst., 12 (1992), 109–121 | MR
[12] Paternain G. P., “On the topology of manifolds with completely integrable geodesic flows. II”, J. Geom. and Phys., 13 (1994), 289–298 | DOI | MR | Zbl
[13] Sinai Ya. G., Introduction to ergodic theory, Math. Notes, 18, Princeton Univ. Press, Princeton, 1976 | MR
[14] Taimanov I. A., “Topologicheskie prepyatstviya k integriruemosti geodezicheskikh potokov na neodnosvyaznykh mnogoobraziyakh”, Izv. AN SSSR. Ser. mat., 51:2 (1987), 429–435 | MR
[15] Taimanov I. A., “O topologicheskikh svoistvakh integriruemykh geodezicheskikh potokov”, Mat. zametki, 44:2 (1988), 283–284 | MR
[16] Taimanov I. A., “Topologiya rimanovykh mnogoobrazii s integriruemymi geodezicheskimi potokami”, Tr. MIAN, 205, 1994, 150–163 | Zbl
[17] Troyanov M., “L'horizon de SOL”, Expo. Math., 16:5 (1998), 441–479 | MR | Zbl