Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 76-89
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Regularized adelic formulas for gamma and beta functions for arbitrary quasicharacters (either ramified or not) and in an arbitrary field of algebraic numbers are concretized as applied to one-class quadratic fields (and to the field of rational numbers). Applications to 4-tachyon tree string amplitudes, to the Veneziano (open strings) and Virasoro (closed strings) amplitudes as well as to massless 4-particle amplitudes of the Ramond–Neveu–Schwarz superstring and a heterotic string are discussed. Certain relations between different superstring amplitudes are established.
@article{TM_2000_228_a6,
     author = {V. S. Vladimirov},
     title = {Adelic {Formulas} for {Gamma} and {Beta} {Functions} of {One-Class} {Quadratic} {Fields:} {Applications} to {4-Particle} {Scattering} {String} {Amplitudes}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {76--89},
     year = {2000},
     volume = {228},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a6/}
}
TY  - JOUR
AU  - V. S. Vladimirov
TI  - Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 76
EP  - 89
VL  - 228
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a6/
LA  - ru
ID  - TM_2000_228_a6
ER  - 
%0 Journal Article
%A V. S. Vladimirov
%T Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 76-89
%V 228
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a6/
%G ru
%F TM_2000_228_a6
V. S. Vladimirov. Adelic Formulas for Gamma and Beta Functions of One-Class Quadratic Fields: Applications to 4-Particle Scattering String Amplitudes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 76-89. http://geodesic.mathdoc.fr/item/TM_2000_228_a6/

[1] Bogolyubov N. N., Izbrannye trudy, t. 1–3, Nauk. dumka, Kiev, 1969–1971 | MR

[2] Bogolubov N. N., Selected works, In 4 pts., Gordon and Breach, New York–London, 1990–1995 | MR | Zbl

[3] Hensel K., “Über eine neue Begründung der Theorie der algebraischen Zahlen”, Jahresber. Dtsch. Math.-Ver., 6:1 (1897), 83–88

[4] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR | Zbl

[5] Schikhof W. H., Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Univ. Press, Cambridge, 1984 | MR | Zbl

[6] Koblits N., $p$-Adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsiya, Mir, M., 1982 | MR

[7] Veil A., Osnovy teorii chisel, Mir, M., 1972 | MR

[8] Gelfand I. M., Graev M. M., Pyatetskii-Shapiro I. I., Teoriya predstavlenii i avtomorfnye funktsii, Nauka, M., 1966 | MR

[9] Vladimirov V. C., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR

[10] Khrennikov A., $p$-Adic valued distributions in mathematical physics, Kluver, Dordrecht, 1994 | MR | Zbl

[11] Brekke L., Freund P. G. O., “$p$-Adic numbers in physics”, Phys. Repts. Rev. Sect. Phys. Lett., 233:1 (1993), 1–66 | MR

[12] Freund P. G. O., Witten E., “Adelic string amplitudes”, Phys. Lett. B, 199:2 (1987), 191–194 | DOI | MR

[13] Volovich I. V., “Harmonic analysis and $p$-adic strings”, Lett. Math. Phys., 16 (1988), 61–67 | DOI | MR | Zbl

[14] Vladimirov V. S., Sapuzhak T. M., “Adelic formulas for string amplitudes in fields of algebraic numbers”, Lett. Math. Phys., 37 (1996), 233–242 | DOI | MR | Zbl

[15] Vladimirov V. S., “Adelnye formuly dlya gamma- i beta-funktsii popolnenii polei algebraicheskikh chisel i ikh primeneniya k strunnym amplitudam”, Izv. RAN. Ser. mat., 60:1 (1996), 63–86 | MR | Zbl

[16] Vladimirov V. C., “Adelnye formuly dlya gamma- i beta-funktsii v polyakh algebraicheskikh chisel”, Dokl. RAN, 347:1 (1996), 11–15 | MR | Zbl

[17] Vladimirov V. S., “Adelic formulas for gamma- and beta-functions in algebraic number fields”, $p$-Adic functional analysis, Lect. Notes Pure and Appl. Math., 192, M. Dekker, N. Y., 1997, 383–395 | MR | Zbl

[18] Vladimirov V. S., “O razvetvlennykh kharakterakh gruppy idelei odnoklassnykh kvadratichnykh polei”, Tr. MIAN, 224, 1999, 122–129 | MR | Zbl

[19] Vladimirov V. S., “Adelnye formuly Frëinda–Vittena dlya amplitud Venetsiano i Virasoro–Shapiro”, UMN, 48:6 (1993), 3–38 | MR | Zbl

[20] Vladimirov V. S., “On the Freund–Witten adelic formula for Veneziano amplitudes”, Lett. Math. Phys., 27 (1993), 123–131 | DOI | MR | Zbl

[21] Grin M., Shvarts Dzh., Vitten E., Teoriya superstrun, 1,2, Mir, M., 1990

[22] Freund P. G. O., Olson N., “Non-Archimedean strings”, Phys. Lett. B, 199:2 (1987), 186–190 | DOI | MR

[23] Frampton P. H., Nishino H., “Theory of $p$-adic closed strings”, Phys. Rev. Lett., 62:17 (1989), 1960–1963 | DOI | MR

[24] Frampton P. H., Okada Y., “$p$-Adic string $N$-point function”, Phys. Rev. Lett., 60:6 (1988), 484–486 | DOI | MR

[25] Aref'eva I. Ya., Dragovic B. G., Volovich I.V., “Open and closed $p$-adic strings and quadratic extentions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[26] Ruelle Ph., Thiran E., Verstegen D., Weyers J., “Adelic string and superstring amplitudes”, Mod. Phys. Lett. A, 4:18 (1989), 1745–1752 | DOI | MR