On Bogolyubov's ``Edge-of-the-Wedge'' Theorem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 24-31

Voir la notice de l'article provenant de la source Math-Net.Ru

A “one-sided” version of N. Bogolyubov's “edge-of-the-wedge” theorem is considered. The proof is based upon classical ideas and results of R. Nevanlinna and T. Carleman related to the concept of harmonic measure.
@article{TM_2000_228_a2,
     author = {A. A. Gonchar},
     title = {On {Bogolyubov's} {``Edge-of-the-Wedge''} {Theorem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {24--31},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a2/}
}
TY  - JOUR
AU  - A. A. Gonchar
TI  - On Bogolyubov's ``Edge-of-the-Wedge'' Theorem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 24
EP  - 31
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a2/
LA  - ru
ID  - TM_2000_228_a2
ER  - 
%0 Journal Article
%A A. A. Gonchar
%T On Bogolyubov's ``Edge-of-the-Wedge'' Theorem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 24-31
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a2/
%G ru
%F TM_2000_228_a2
A. A. Gonchar. On Bogolyubov's ``Edge-of-the-Wedge'' Theorem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 24-31. http://geodesic.mathdoc.fr/item/TM_2000_228_a2/