Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 203-216
Voir la notice de l'article provenant de la source Math-Net.Ru
The system under consideration is that of a two-sided infinite isotropic $XY$-chain partitioned into two distinct regions. Each side is initially in thermal equilibrium. We investigate the situation when the partition is removed at time $t=0$. For $t\rightarrow\infty the system approaches thermal equilibrium if the two sides were at the same temperature. If initially the two sides were at different temperatures then the system approaches a steady state.
@article{TM_2000_228_a15,
author = {T. G. Ho and H. Araki},
title = {Asymptotic {Time} {Evolution} of {a~Partitioned} {Infinite} {Two-sided} {Isotropic} $XY$-chain},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {203--216},
publisher = {mathdoc},
volume = {228},
year = {2000},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a15/}
}
TY - JOUR AU - T. G. Ho AU - H. Araki TI - Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 2000 SP - 203 EP - 216 VL - 228 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_2000_228_a15/ LA - en ID - TM_2000_228_a15 ER -
T. G. Ho; H. Araki. Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 203-216. http://geodesic.mathdoc.fr/item/TM_2000_228_a15/