Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 203-216

Voir la notice de l'article provenant de la source Math-Net.Ru

The system under consideration is that of a two-sided infinite isotropic $XY$-chain partitioned into two distinct regions. Each side is initially in thermal equilibrium. We investigate the situation when the partition is removed at time $t=0$. For $t\rightarrow\infty the system approaches thermal equilibrium if the two sides were at the same temperature. If initially the two sides were at different temperatures then the system approaches a steady state.
@article{TM_2000_228_a15,
     author = {T. G. Ho and H. Araki},
     title = {Asymptotic {Time} {Evolution} of {a~Partitioned} {Infinite} {Two-sided} {Isotropic} $XY$-chain},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {203--216},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a15/}
}
TY  - JOUR
AU  - T. G. Ho
AU  - H. Araki
TI  - Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 203
EP  - 216
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a15/
LA  - en
ID  - TM_2000_228_a15
ER  - 
%0 Journal Article
%A T. G. Ho
%A H. Araki
%T Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 203-216
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a15/
%G en
%F TM_2000_228_a15
T. G. Ho; H. Araki. Asymptotic Time Evolution of a~Partitioned Infinite Two-sided Isotropic $XY$-chain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 203-216. http://geodesic.mathdoc.fr/item/TM_2000_228_a15/