Global Solutions in Gravity. Lorentzian Signature
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 168-195
Voir la notice de l'article provenant de la source Math-Net.Ru
A constructive method of conformal blocks is developed for the construction of global solutions for two-dimensional metrics having one Killing vector. The method is proved to yield a smooth universal covering space with a smooth pseudo-Riemannian metric. The Schwarzschild, Reisner–Nordström solutions, extremal black hole, dilaton black hole, and constant curvature surfaces are considered as examples.
@article{TM_2000_228_a13,
author = {M. O. Katanaev},
title = {Global {Solutions} in {Gravity.} {Lorentzian} {Signature}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {168--195},
publisher = {mathdoc},
volume = {228},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a13/}
}
M. O. Katanaev. Global Solutions in Gravity. Lorentzian Signature. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 168-195. http://geodesic.mathdoc.fr/item/TM_2000_228_a13/