Invariant Description of Local Symmetries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154
Voir la notice de l'article provenant de la source Math-Net.Ru
A procedure is proposed for finding local symmetries for the models with a given Lagrange function. The objects obtained by this procedure (in particular, the first- and second-class constraints) are described in terms of the invariant language of symplectic geometry. The one-to-one correspondence between the Lagrangian and Hamiltonian local coordinates is demonstrated.
@article{TM_2000_228_a11,
author = {V. P. Pavlov},
title = {Invariant {Description} of {Local} {Symmetries}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {145--154},
publisher = {mathdoc},
volume = {228},
year = {2000},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a11/}
}
V. P. Pavlov. Invariant Description of Local Symmetries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154. http://geodesic.mathdoc.fr/item/TM_2000_228_a11/