Invariant Description of Local Symmetries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154
Voir la notice du chapitre de livre
A procedure is proposed for finding local symmetries for the models with a given Lagrange function. The objects obtained by this procedure (in particular, the first- and second-class constraints) are described in terms of the invariant language of symplectic geometry. The one-to-one correspondence between the Lagrangian and Hamiltonian local coordinates is demonstrated.
@article{TM_2000_228_a11,
author = {V. P. Pavlov},
title = {Invariant {Description} of {Local} {Symmetries}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {145--154},
year = {2000},
volume = {228},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a11/}
}
V. P. Pavlov. Invariant Description of Local Symmetries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154. http://geodesic.mathdoc.fr/item/TM_2000_228_a11/
[1] Pavlov V. P., “Skobka Diraka”, TMF, 92:3 (1992), 451–456 | MR | Zbl
[2] Battle C., Gomis J., Pons J. M., Roman N., “Connection between Lagrangean Hamiltonian formulations of Dirac constrainted mechanics”, J. Math. Phys., 28 (1987), 1117–1129
[3] Pavlov V. P., Starinets A. O., “Geometriya fazovogo prostranstva dlya sistem so svyazyami”, TMF, 105:3 (1995), 429–437 | MR | Zbl
[4] Gitman D. M., Tyutin I. V., Kanonicheskoe kvantovanie sistem so svyazyami, Nauka, M., 1986 | MR | Zbl
[5] Faddeev L. D., “Integral Feinmana dlya singulyarnykh lagranzhianov”, TMF, 1:1 (1969), 3–18 | MR | Zbl