Invariant Description of Local Symmetries
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154

Voir la notice de l'article provenant de la source Math-Net.Ru

A procedure is proposed for finding local symmetries for the models with a given Lagrange function. The objects obtained by this procedure (in particular, the first- and second-class constraints) are described in terms of the invariant language of symplectic geometry. The one-to-one correspondence between the Lagrangian and Hamiltonian local coordinates is demonstrated.
@article{TM_2000_228_a11,
     author = {V. P. Pavlov},
     title = {Invariant {Description} of {Local} {Symmetries}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {145--154},
     publisher = {mathdoc},
     volume = {228},
     year = {2000},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_2000_228_a11/}
}
TY  - JOUR
AU  - V. P. Pavlov
TI  - Invariant Description of Local Symmetries
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 2000
SP  - 145
EP  - 154
VL  - 228
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_2000_228_a11/
LA  - ru
ID  - TM_2000_228_a11
ER  - 
%0 Journal Article
%A V. P. Pavlov
%T Invariant Description of Local Symmetries
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 2000
%P 145-154
%V 228
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_2000_228_a11/
%G ru
%F TM_2000_228_a11
V. P. Pavlov. Invariant Description of Local Symmetries. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Problems of the modern mathematical physics, Tome 228 (2000), pp. 145-154. http://geodesic.mathdoc.fr/item/TM_2000_228_a11/