Exact Constants in Kolmogorov-Type Inequalities
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 137-145

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is concerned with the evaluation of Kolmogorov constants. We suggest an effective algorithm using the chattering-control theory for approximately evaluating the best constants $K_m$ in a series of Kolmogorov-type inequalities, which has not been studied so far. The best Kolmogorov constant $K_3$ is found, and asymptotic estimates of $K_m$ with large $m$ are obtained.
@article{TM_1999_227_a8,
     author = {M. I. Zelikin and L. F. Zelikina},
     title = {Exact {Constants} in {Kolmogorov-Type} {Inequalities}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_227_a8/}
}
TY  - JOUR
AU  - M. I. Zelikin
AU  - L. F. Zelikina
TI  - Exact Constants in Kolmogorov-Type Inequalities
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 137
EP  - 145
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_227_a8/
LA  - ru
ID  - TM_1999_227_a8
ER  - 
%0 Journal Article
%A M. I. Zelikin
%A L. F. Zelikina
%T Exact Constants in Kolmogorov-Type Inequalities
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 137-145
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_227_a8/
%G ru
%F TM_1999_227_a8
M. I. Zelikin; L. F. Zelikina. Exact Constants in Kolmogorov-Type Inequalities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 137-145. http://geodesic.mathdoc.fr/item/TM_1999_227_a8/