The Existence and Nonexistence of Periodic Solutions to Certain Nonlinear Hyperbolic Equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 260-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1999_227_a18,
     author = {S. I. Pokhozhaev},
     title = {The {Existence} and {Nonexistence} of {Periodic} {Solutions} to {Certain} {Nonlinear} {Hyperbolic} {Equations}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {260--285},
     publisher = {mathdoc},
     volume = {227},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_227_a18/}
}
TY  - JOUR
AU  - S. I. Pokhozhaev
TI  - The Existence and Nonexistence of Periodic Solutions to Certain Nonlinear Hyperbolic Equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 260
EP  - 285
VL  - 227
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_227_a18/
LA  - ru
ID  - TM_1999_227_a18
ER  - 
%0 Journal Article
%A S. I. Pokhozhaev
%T The Existence and Nonexistence of Periodic Solutions to Certain Nonlinear Hyperbolic Equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 260-285
%V 227
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_227_a18/
%G ru
%F TM_1999_227_a18
S. I. Pokhozhaev. The Existence and Nonexistence of Periodic Solutions to Certain Nonlinear Hyperbolic Equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 260-285. http://geodesic.mathdoc.fr/item/TM_1999_227_a18/

[1] Mustonen V., Pohozaev S., “On the nonexistence of periodic radial solutions for semilinear wave equations in unbounded domain”, Diff. and Integr. Equat., 11:1 (1998), 133–145 | MR | Zbl

[2] Pokhozhaev S. I., “O sobstvennykh funktsiyakh kvazilineinykh ellipticheskikh zadach”, Mat. sb., 82:2 (1970), 192–212

[3] Pokhozhaev S. I., “O periodicheskikh resheniyakh nekotorykh nelineinykh giperbolicheskikh uravnenii”, DAN SSSR, 198:6 (1971), 1274–1277

[4] Pyke R. M., Sigal I. M., “Nonlinear wave equations: Constraints on periods and exponential bounds for periodic solutions”, Duke Math. J., 88:1 (1997), 133–180 | DOI | MR | Zbl

[5] Vejvoda O., Herrmann L., Lovicar V. et al., Partial differential equations: time-periodic solutions, Sijthoff Noordhoff, Marylan–Rockville, 1981

[6] Pokhozhaev S. I., “O metode globalnogo rassloeniya v nelineinykh variatsionnykh zadachakh”, Tr. MIAN, 219, 1997, 286–334 | MR | Zbl

[7] Constantin A., Escher J., “Well-posedness, global existence and blowup phenomena for a periodic quasilinear hyperbolic equation”, Commun. Pure and Appl. Math., L1:5 (1998), 475–504 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR