Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 152-161
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1999_227_a10,
author = {G. A. Kalyabin},
title = {Upper {Estimates} for the {Coefficients} of {Algebraic} {Polynomials} via {Their} $L_p${-Norms} on {Intervals}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {152--161},
year = {1999},
volume = {227},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1999_227_a10/}
}
TY - JOUR AU - G. A. Kalyabin TI - Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 152 EP - 161 VL - 227 UR - http://geodesic.mathdoc.fr/item/TM_1999_227_a10/ LA - ru ID - TM_1999_227_a10 ER -
G. A. Kalyabin. Upper Estimates for the Coefficients of Algebraic Polynomials via Their $L_p$-Norms on Intervals. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 18, Tome 227 (1999), pp. 152-161. http://geodesic.mathdoc.fr/item/TM_1999_227_a10/
[1] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1975 | MR
[2] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR
[3] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, per. s angl., Nauka, M., 1966 | MR
[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR