Canonicity of Bäcklund Transformation: $r$-Matrix Approach. II
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 134-139 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This work represents the second part of the paper devoted to the general proof of the canonicity of the Bäcklund transformation (BT) for Hamiltonian integrable systems described by an $SL(2)$-invariant $r$-matrix. Introducing an extended phase space from which the original space is obtained by imposing first-kind constraints, one can prove the canonicity of the BT by a new method. This new proof provides a natural explanation for the fact why the gauge transformation of the matrix $M$ associated with the BT has the same structure as the Lax operator $L$. This technique is illustrated through an example of a DST chain.
@article{TM_1999_226_a9,
     author = {E. K. Sklyanin},
     title = {Canonicity of {B\"acklund} {Transformation:} $r${-Matrix} {Approach.~II}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {134--139},
     year = {1999},
     volume = {226},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_226_a9/}
}
TY  - JOUR
AU  - E. K. Sklyanin
TI  - Canonicity of Bäcklund Transformation: $r$-Matrix Approach. II
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 134
EP  - 139
VL  - 226
UR  - http://geodesic.mathdoc.fr/item/TM_1999_226_a9/
LA  - ru
ID  - TM_1999_226_a9
ER  - 
%0 Journal Article
%A E. K. Sklyanin
%T Canonicity of Bäcklund Transformation: $r$-Matrix Approach. II
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 134-139
%V 226
%U http://geodesic.mathdoc.fr/item/TM_1999_226_a9/
%G ru
%F TM_1999_226_a9
E. K. Sklyanin. Canonicity of Bäcklund Transformation: $r$-Matrix Approach. II. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 134-139. http://geodesic.mathdoc.fr/item/TM_1999_226_a9/

[1] Sklyanin E. K., “Canonicity of Bäcklund transformation: $r$-matrix approach, I”, AMS Collection dedicated to L. D. Faddeev seminar (to appear)

[2] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[3] Kuznetsov V. B., Sklyanin E. K., “On Bäcklund transformations for many-body systems”, J. Phys. A: Math. Gen., 31 (1998), 2241–2251 | DOI | MR | Zbl

[4] Pasquier V., Gaudin M., “The periodic Toda chain and a matrix generalization of the Bessel function recursion relations”, J. Phys. A: Math. Gen., 25 (1992), 5243–5252 | DOI | MR | Zbl

[5] Baxter R. I., Exactly solved models in statistical mechanics, ch. 9–10, Acad. Press, London, 1982 | MR | Zbl