Twist-Related Geometries on q-Minkowski Space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 97-111

Voir la notice de l'article provenant de la source Math-Net.Ru

The role of the quantum universal enveloping algebras of symmetries in constructing the noncommutative geometry of the space–time including vector bundles, measure, equations of motion and their solutions is discussed. In the framework of the twist theory, the Klein–Gordon–Fock and Dirac equations on the quantum Minkowski space are studied from this point of view for the simplest quantum deformation of the Lorentz algebra induced by its Cartan subalgebra twist.
@article{TM_1999_226_a7,
     author = {P. P. Kulish and A. I. Mudrov},
     title = {Twist-Related {Geometries} on {q-Minkowski} {Space}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--111},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_226_a7/}
}
TY  - JOUR
AU  - P. P. Kulish
AU  - A. I. Mudrov
TI  - Twist-Related Geometries on q-Minkowski Space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 97
EP  - 111
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_226_a7/
LA  - ru
ID  - TM_1999_226_a7
ER  - 
%0 Journal Article
%A P. P. Kulish
%A A. I. Mudrov
%T Twist-Related Geometries on q-Minkowski Space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 97-111
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_226_a7/
%G ru
%F TM_1999_226_a7
P. P. Kulish; A. I. Mudrov. Twist-Related Geometries on q-Minkowski Space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 97-111. http://geodesic.mathdoc.fr/item/TM_1999_226_a7/