Interacting Knots
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 232-239
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study geometrical aspects of the interaction of knotlike solitons in the Faddeev model. We argue that the splitting and joining of two solitons is a local process governed by a four-point vertex. The interaction preserves the linking number but in general both the twist and the writhe can change, which suggests that supercoiled states will be present.
@article{TM_1999_226_a18,
     author = {A. J. Niemi},
     title = {Interacting {Knots}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {232--239},
     year = {1999},
     volume = {226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_226_a18/}
}
TY  - JOUR
AU  - A. J. Niemi
TI  - Interacting Knots
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 232
EP  - 239
VL  - 226
UR  - http://geodesic.mathdoc.fr/item/TM_1999_226_a18/
LA  - en
ID  - TM_1999_226_a18
ER  - 
%0 Journal Article
%A A. J. Niemi
%T Interacting Knots
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 232-239
%V 226
%U http://geodesic.mathdoc.fr/item/TM_1999_226_a18/
%G en
%F TM_1999_226_a18
A. J. Niemi. Interacting Knots. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 232-239. http://geodesic.mathdoc.fr/item/TM_1999_226_a18/

[1] Thomson W., “On vortex motion”, Trans. Roy. Soc. Edinbourgh, 25 (1869), 217–260

[2] Faddeev L., Quantization of solitons, Preprint IAS Print-75-QS70, 1975 | MR

[3] Faddeev L., “Einstein and several contemporary tendencies in the field theory of elementary particles”, Relativity, quanta and cosmology, v. 1, eds. M. Pantaleo, F. De Finis, Johnson Reprint, 1979 | MR

[4] Makhankov V. D., Rybakov Y. P., Sanyuk V. I., The Skyrme model: fundamentals, methods, applications, Springer-Verl., Berlin etc., 1993 | MR

[5] Faddeev L., Niemi A. J., “Stable knot-like structures in classical field theory”, Nature, 387 (1997), 58–61 | DOI

[6] Battye R., Sutcliffe P., Solitons, links and knots, Preprint, 1998 ; arXiv: hep-th/9811077 | MR | Zbl

[7] Hietarinta J., Salo P., Faddeev–Hopf knots: Dynamics of linked un-knots, Preprint, 1998 ; arXiv: hep-th/9811053 | MR | Zbl

[8] Atiyah M., The geometry and physics of knots, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[9] Kauffman L. H., Knots and physics, World Sci., Singapore, 1993 | MR

[10] Vakulenko A. F., Kapitanskii L. V., “Ustoichivost solitonov v $S^2$ nelineinoi $\sigma$-modeli”, DAN SSSR, 246 (1979), 840–842 | MR | Zbl