Dynamical Poincar\'e Symmetry Realized by Field-Dependent Diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 193-211

Voir la notice de l'article provenant de la source Math-Net.Ru

We present several Galileo invariant Lagrangians, which are invariant against Poincaré transformations defined in one higher (spatial) dimension. Thus these models, which arise in a variety of physical situations, provide a representation for a dynamical (hidden) Poincaré symmetry. The action of this symmetry transformation on the dynamical variables is nonlinear, and in one case involves a peculiar field-dependent diffeomorphism. Some of our models are completely integrable, and we exhibit explicit solutions.
@article{TM_1999_226_a15,
     author = {R. Jackiw and A. P. Polychronakos},
     title = {Dynamical {Poincar\'e} {Symmetry} {Realized} by {Field-Dependent} {Diffeomorphisms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {193--211},
     publisher = {mathdoc},
     volume = {226},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_226_a15/}
}
TY  - JOUR
AU  - R. Jackiw
AU  - A. P. Polychronakos
TI  - Dynamical Poincar\'e Symmetry Realized by Field-Dependent Diffeomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 193
EP  - 211
VL  - 226
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_226_a15/
LA  - en
ID  - TM_1999_226_a15
ER  - 
%0 Journal Article
%A R. Jackiw
%A A. P. Polychronakos
%T Dynamical Poincar\'e Symmetry Realized by Field-Dependent Diffeomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 193-211
%V 226
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_226_a15/
%G en
%F TM_1999_226_a15
R. Jackiw; A. P. Polychronakos. Dynamical Poincar\'e Symmetry Realized by Field-Dependent Diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 193-211. http://geodesic.mathdoc.fr/item/TM_1999_226_a15/