Dynamical Poincaré Symmetry Realized by Field-Dependent Diffeomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 193-211 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We present several Galileo invariant Lagrangians, which are invariant against Poincaré transformations defined in one higher (spatial) dimension. Thus these models, which arise in a variety of physical situations, provide a representation for a dynamical (hidden) Poincaré symmetry. The action of this symmetry transformation on the dynamical variables is nonlinear, and in one case involves a peculiar field-dependent diffeomorphism. Some of our models are completely integrable, and we exhibit explicit solutions.
@article{TM_1999_226_a15,
     author = {R. Jackiw and A. P. Polychronakos},
     title = {Dynamical {Poincar\'e} {Symmetry} {Realized} by {Field-Dependent} {Diffeomorphisms}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {193--211},
     year = {1999},
     volume = {226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_226_a15/}
}
TY  - JOUR
AU  - R. Jackiw
AU  - A. P. Polychronakos
TI  - Dynamical Poincaré Symmetry Realized by Field-Dependent Diffeomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 193
EP  - 211
VL  - 226
UR  - http://geodesic.mathdoc.fr/item/TM_1999_226_a15/
LA  - en
ID  - TM_1999_226_a15
ER  - 
%0 Journal Article
%A R. Jackiw
%A A. P. Polychronakos
%T Dynamical Poincaré Symmetry Realized by Field-Dependent Diffeomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 193-211
%V 226
%U http://geodesic.mathdoc.fr/item/TM_1999_226_a15/
%G en
%F TM_1999_226_a15
R. Jackiw; A. P. Polychronakos. Dynamical Poincaré Symmetry Realized by Field-Dependent Diffeomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 193-211. http://geodesic.mathdoc.fr/item/TM_1999_226_a15/

[1] Faddeev L., Jackiw R., “Hamiltonian reduction of unconstrained and constrained systems”, Phys. Rev. Lett., 60 (1988), 1692–1694 | DOI | MR | Zbl

[2] Eckart C., “The electrodynamics of material media”, Phys. Rev., 54 (1938), 920–923 | DOI

[3] Schakel A., Effective field theory of ideal-fluid hydrodynamics, Preprint, 1996; arXiv: cond-mat/9607164

[4] Ogawa N., A note of gauge principle and spontaneous symmetry breaking in classical particle mechanics, Preprint, 1998; arXiv: 9801115

[5] Landau L., Lifschitz E., Fluid mechanics, 2-nd ed., Pergamon Press, Oxford (UK), 1987 | MR | Zbl

[6] Madelung E., “Quantentheorie in hydrodynamischer Form”, Ztschr. Phys., 40 (1926), 322–326 | DOI | Zbl

[7] Merzbacher E., Quantum mechanics, 3-rd ed., Wiley, N. Y., 1998 | MR

[8] Jevicki A., Phys. Rev. D, 57 (1998), 5955 | DOI

[9] Hoppe J., Quantum theory of a massless relativistic surface and ... , MIT PhD. Thes., 1982

[10] Bordemann M., Hoppe J., “The dynamics of relativistic membranes. Reduction to 2-dimensional fluid dynamics”, Phys. Lett. B, 317 (1993), 315–320 | DOI | MR

[11] Jackiw R., “Introducing scale symmetry”, Phys. Today, 25:1 (1972), 23–27 | DOI

[12] Hagen C., “Scale and conformal transformations in Galilean-covariant field theory”, Phys. Rev. D, 5 (1972), 377–388 | DOI

[13] Niederer U., “The maximal kinematical invariance group of the free Schrödinger equation”, Helv. phys. acta, 45 (1972), 802–810 | MR

[14] Niederer U., “The maximal kinematical invariance group of the harmonic oscillator”, Helv. phys. acta, 46 (1973), 191–200

[15] Niederer U., “The maximal kinematical invariance group of Schrödinger equations with arbitrary potentials”, Helv. phys. acta, 47 (1974), 167–172 | MR

[16] Niederer U., “Schrödinger invariant generalized heat equations”, Helv. phys. acta, 51 (1978), 220–239 | MR

[17] Susskind L., “Model of self-induced strong interactions”, Phys. Rev., 165 (1968), 1535–1554 | DOI

[18] Bazeia D., Jackiw R., “Nonlinear realization of a dynamical Poincaré symmetry by a field-dependent diffeomorphism”, Ann. Phys., 270:1 (1998), 246–259 ; arXiv: hep-th/9803165 | DOI | MR | Zbl