Singleton Physics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 185-192 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We review the developments in the past twenty years (which are based on our deformation philosophy of physical theories) dealing with elementary particles composed of singletons in anti-De Sitter space-time. The study starts with the kinematical aspects (especially for massless particles) and extends to the beginning of a field theory of composite elementary particles and its relations with conformal field theory (including very recent developments).
@article{TM_1999_226_a14,
     author = {M. Flato and {\CYRS}. Fr{\o}nsdal and D. Sternheimer},
     title = {Singleton {Physics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {185--192},
     year = {1999},
     volume = {226},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_226_a14/}
}
TY  - JOUR
AU  - M. Flato
AU  - С. Frønsdal
AU  - D. Sternheimer
TI  - Singleton Physics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 185
EP  - 192
VL  - 226
UR  - http://geodesic.mathdoc.fr/item/TM_1999_226_a14/
LA  - en
ID  - TM_1999_226_a14
ER  - 
%0 Journal Article
%A M. Flato
%A С. Frønsdal
%A D. Sternheimer
%T Singleton Physics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 185-192
%V 226
%U http://geodesic.mathdoc.fr/item/TM_1999_226_a14/
%G en
%F TM_1999_226_a14
M. Flato; С. Frønsdal; D. Sternheimer. Singleton Physics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical physics. Problems of quantum field theory, Tome 226 (1999), pp. 185-192. http://geodesic.mathdoc.fr/item/TM_1999_226_a14/

[1] Angeloupoulos E., Flato M., “On unitary implementability of conformal transformations”, Lett. Math. Phys., 2 (1978), 405–412 | DOI | MR

[2] Angeloupoulos E., Flato M., Fronsdal C., Sternheimer D., “Massless particles, conformal group and De Sitter universe”, Phys. Rev. D, 23 (1981), 1278–1289 | DOI | MR

[3] Angeloupoulos E., Laoues M., “Masslessness in $n$ dimensions”, Rev. Math. Phys., 10 (1998), 271–299 ; arXiv: hep-th/9806100 | DOI | MR

[4] Araki H., “Indecomposable representations with invariant inner product. A theory of the Gupta–Bleuler triplet”, Commun. Math. Phys., 97 (1985), 149–159 | DOI | MR | Zbl

[5] Bayen F., Flato M., Fronsdal C., Haidari A., “Conformal invariance and gauge fixing in QED”, Phys. Rev. D, 32 (1985), 2673–2682 | DOI

[6] Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D., “Deformation theory and quantization, I”, Ann. Phys., 111 (1978), 61–110 ; “II”, 111–151 | DOI | MR | Zbl | MR | Zbl

[7] Binegar B., “Relativistic field theories in three dimensions”, J. Math. Phys., 23 (1982), 1511–1517 | DOI | MR

[8] Binegar B., Flato M., Fronsdal C., Salamo S., “De Sitter conformal field theories”, Czechosl. J. Phys. B, 32 (1982), 439–471 | DOI | MR

[9] Binegar B., Fronsdal C., Heidenreich W., “De Sitter QED”, Ann. Phys., 149 (1983), 254–272 | DOI | MR

[10] Binegar B., Fronsdal C., Heidenreich W., “Conformal QED”, J. Math. Phys., 24 (1983), 2828–2846 | DOI | MR

[11] Binegar B., Fronsdal C., Heidenreich W., “Linear conformal quantum gravity”, Phys. Rev. D, 27 (1983), 2249–2261 | DOI | MR

[12] Brown J., Henneaux M., “Central charges in the canonical realization of asymptotic symmetries: An example from three-dimensional gravity”, Commun. Math. Phys., 104 (1986), 207–226 | DOI | MR | Zbl

[13] Dirac P. A. M., “A remarkable representation of the $3+2$ de Sitter group”, J. Math. Phys., 4 (1963), 901–909 | DOI | MR | Zbl

[14] Fang J., Fronsdal C., “Massless, half-integer-spin fields in de Sitter space”, Phys. Rev. D, 22 (1980), 1361–1367 | DOI | MR

[15] Ferrara S., Frønsdal C., “Conformal Maxwell theory as a singleton field theory on AdS$_5$, IIB three-branes and duality”, Class. and Quant. Gravity, 15 (1998), 2153–2164 ; arXiv: hep-th/9712239 | DOI | MR | Zbl

[16] Ferrara S., Frønsdal C., “Gauge fields as composite boundary excitations”, Phys. Lett. B, 433 (1998), 19–28 ; arXiv: hep-th/9802126 | DOI | MR

[17] Ferrara S., Frønsdal C., “Gauge fields and singletons of AdS$_{2p+1}$”, Lett. Math. Phys., 46 (1998), 157–169 ; arXiv: hep-th/9806072 | DOI | MR | Zbl

[18] Ferrara S., Frønsdal C., Zaffaroni A., “On $N=8$ supergravity on $AdS_5$ and $N=4$ superconformal Yang–Mills theory”, Nucl. Phys. B, 532 (1998), 153 ; arXiv: hep-th/9802203 | DOI | MR | Zbl

[19] Ferrara S., Kehagias A., Partouche H., Zaffaroni A., “Membranes and five-branes with lower supersymmetry and their AdS supergravity duals”, Phys. Lett. B, 431 (1998), 42–48 ; arXiv: hep-th/9803109 | DOI | MR

[20] Ferrara S., Zaffaroni A., “$N=1,2$ $4D$ superconformal field theories and supergravity in AdS$_5$”, Phys. Lett. B, 431 (1998), 49–56 ; arXiv: hep-th/9803060 | DOI | MR

[21] Ferrara S., Zaffaroni A., Bulk gauge fields in AdS supergravity and supersingletons, Preprint, 1998 ; arXiv: hep-th/9807090 | MR

[22] Flato M., “Deformation view of physical theories”, Czechosl. J. Phys. B, 32 (1982), 472–475 | DOI | MR

[23] Flato M., “Two disjoint aspects of the deformation programme: Quantizing Nambu mechanics; Singleton physics”, Particles, fields and gravitation, AIP Conf. Proc., 453, ed. J. Rembieliński, N. Y., 1998, 49–52 ; arXiv: hep-th/9809073 | MR | Zbl

[24] Flato M., Hadjiivanov L. K., Todorov I. T., “Quantum deformations of singletons and of free zero-mass fields”, Found. Phys., 23 (1993), 571–586 | DOI | MR

[25] Flato M., Fronsdal C., “One massless particle equals two Dirac singletons”, Lett. Math. Phys., 2 (1978), 421–426 | DOI | MR

[26] Flato M., Fronsdal C., “On Dis and Racs”, Phys. Lett. B, 97 (1980), 236–240 | DOI | MR

[27] Flato M., Fronsdal C., “Quantum field theory of singletons. The Rac”, J. Math. Phys., 22 (1981), 1100–1105 | DOI | MR

[28] Flato M., Fronsdal C., “Representations of conformal supersymmetry”, Lett. Math. Phys., 8 (1984), 159–162 | DOI | MR | Zbl

[29] Flato M., Fronsdal C., “Quarks or singletons?”, Phys. Lett. B, 172 (1986), 412–416 | DOI

[30] Flato M., Fronsdal C., “Singletons: Fundamental gauge theory”, Topological and geometrical methods in field theory (Espoo, 1986), World Sci. Publ., Teaneck, NJ, 1986, 273–290 | MR

[31] Flato M., Fronsdal C., “Spontaneously generated field theories, zero-center modules, colored singletons and the virtues of $N=6$ supergravity”, Essays in supersymmetry, Math. Phys. Stud., 8, ed. C. Fronsdal, D. Reidel Publ., Dordrecht, 1986, 123–162 | MR

[32] Flato M., Fronsdal C., “The singleton dipole”, Commun. Math. Phys., 108 (1987), 469–482 | DOI | MR | Zbl

[33] Flato M., Fronsdal C., “How BRST invariance of QED is induced from the underlying field theory”, Phys. Lett. B, 189 (1987), 145–148 | DOI | MR

[34] Flato M., Fronsdal C., “Composite electrodynamics”, J. Geom. and Phys., 5 (1988), 37–61 | DOI | MR | Zbl

[35] Flato M., Fronsdal C., “Parastatistics, highest weight $\mathfrak{osp}(n,\infty)$ modules, singleton statistics and confinement”, J. Geom. and Phys., 6 (1989), 293–309 | DOI | MR | Zbl

[36] Flato M., Fronsdal C., “Three-dimensional singletons”, Lett. Math. Phys., 20 (1989), 65–74 | DOI | MR

[37] Flato M., Fronsdal C., “Non-abelian singletons”, J. Math. Phys., 32 (1991), 524–531 | DOI | MR | Zbl

[38] Flato M., Frønsdal C., “Interacting singletons”, Lett. Math. Phys., 44 (1998), 249–259 ; arXiv: hep-th/9803013 | DOI | MR | Zbl

[39] Flato M., Fronsdal C., Gazeau J. P., “Masslessness and light-cone propagation in $3+2$ De Sitter and $2+1$ Minkowski spaces”, Phys. Rev. D, 33 (1986), 415–420 | DOI | MR

[40] Flato M., Fronsdal C., Sternheimer D., “Singletons as a basis for composite conformal quantum electrodynamics”, Quantum theories and geometry, Math. Phys. Stud., 10, Kluwer Acad. Publ., Dordrecht, 1988, 65–76 | MR

[41] Freedman D. Z., Mathur S. D., Matusis A., Rastelli L., Correlation functions in the CFT(d)/AdS(d+1) correspondence, Preprint MIT-CTP-2727, 1998 ; arXiv: hep-th/9804058 | MR

[42] Fronsdal C., “Singletons and massless, integral-spin fields on De Sitter space”, Phys. Rev. D, 20 (1979), 848–856 | DOI | MR

[43] Fronsdal C., “Dirac supermultiplet”, Phys. Rev. D, 26 (1982), 1988–1995 | DOI | MR

[44] C. Fronsdal(ed.), Essays in supersymmetry, Math. Phys. Stud., 8, D. Reidel Publ., Dordrecht, 1986

[45] Fronsdal C., “The supersingleton. I: Free dipole and interactions at infinity”, Lett. Math. Phys., 16 (1988), 163–172 ; “II: Composite electrodynamics”, 173–177 | DOI | MR | MR

[46] Fronsdal C., Heidenreich W. F., “Linear De Sitter gravity”, J. Math. Phys., 28 (1987), 215–220 | DOI | MR

[47] Harun Ar Rashid A. M., Flato M., Fronsdal C., “Three D singletons and 2-D C.F.T.”, Intern. J. Mod. Phys. A, 7 (1992), 2193–2206 | DOI | MR | Zbl

[48] Ito K., Extended superconformal algebras on AdS$_{3}$, Preprint YITP-98-74, Yukawa Inst., Kyoto, 1998 ; arXiv: hep-th/9811002 | MR

[49] Laoues M., “Masslessness in $n$-dimensions”, Rev. Math. Phys., 10 (1998), 271–300 ; arXiv: hep-th/9806100 | DOI | MR

[50] Maldacena J. M., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252 ; arXiv: hep-th/9711200 | MR | Zbl

[51] Michéa S., “3D singletons and their boundary 2D conformal field theory”, Rev. Math. Phys., 11 (1999), 1079–1090 | DOI | MR | Zbl

[52] Sezgin E., Sundel P., “Higher spin $N=8$ supergravity”, JHEP, 9811 (1998), 16 ; arXiv: hep-th/9805125 | DOI | MR

[53] Sternheimer D., “Deformation quantization: Twenty years after”, Particles, fields and gravitation, AIP Conf. Proc., 453, ed. J. Rembieliński, N. Y., 1998, 107–145 ; arXiv: math.QA/9809056 | MR | Zbl

[54] Witten E., “Anti-de Sitter space and holography”, Adv. Theor. Math. Phys., 2 (1998), 253–291 ; arXiv: hep-th/9802150 | MR | Zbl

[55] Witten E., “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories”, Adv. Theor. Math. Phys., 2 (1998), 505–532 ; arXiv: hep-th/9803131 | MR | Zbl

[56] Witten E., “Baryons and branes in anti-de Sitter space”, JHEP, 9807 (1998), 006 ; arXiv: hep-th/9805112 | MR

[57] Witten E., “AdS/CFT correspondence and topological field theory”, JHEP, 9812 (1998), 12 ; arXiv: hep-th/9812012 | DOI | MR