How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 132-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general method of computing cohomology groups of the space of nonsingular algebraic hypersurfaces of degree $d$ in $\mathbf{CP}^n$ is described. Using this method, rational cohomology groups of such spaces with $n=2$, $d\le 4$ and $n=3=d$ and also of the space of nondegenerate quadratic vector fields in $\mathbf C^3$ are calculated.
@article{TM_1999_225_a7,
     author = {V. A. Vassiliev},
     title = {How to {Calculate} {Homology} {Groups} of {Spaces} of {Nonsingular} {Algebraic} {Projective} {Hypersurfaces}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {132--152},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a7/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 132
EP  - 152
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a7/
LA  - ru
ID  - TM_1999_225_a7
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 132-152
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a7/
%G ru
%F TM_1999_225_a7
V. A. Vassiliev. How to Calculate Homology Groups of Spaces of Nonsingular Algebraic Projective Hypersurfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 132-152. http://geodesic.mathdoc.fr/item/TM_1999_225_a7/

[1] Arnold V. I., “O nekotorykh topologicheskikh invariantakh algebraicheskikh funktsii”, Tr. Mosk. mat. o-va, 21, 1970, 27–46 | MR

[2] Arnold V. I., “Prostranstva funktsii s umerennymi osobennostyami”, Funktsion. analiz i ego pril., 23:3 (1989), 1–10 | MR

[3] Arnold V. I., Zadachi, Fazis, M., 1999, v pechati

[4] Borel A., “Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts”, Ann. Math., 57:2 (1953), 115–207 ; Borel A., “O kogomologiyakh glavnykh rassloennykh prostranstv i odnorodnykh prostranstv kompaktnykh grupp Li”, Rassloennye prostranstva i ikh prilozheniya: Sb. per., Izd-vo inostr. lit., M., 1958, 163–246 | DOI | MR | Zbl | MR

[5] Fuks D. B., “Kharakteristicheskie klassy Maslova–Arnolda”, DAN SSSR, 178 (1968), 303–306 | MR | Zbl

[6] Kharlamov V. M., “Zhestkaya izotopicheskaya klassifikatsiya veschestvennykh ploskikh krivykh stepeni 5”, Funktsion. analiz i ego pril., 15:1 (1981), 88–89 | MR | Zbl

[7] Milnor J. W., Stasheff J. D., Characteristic classes, Ann. Math. Stud., 76, Princeton Univ. Press, Princeton, N.J.; Univ. Tokyo Press, Tokyo, 1974, 331 pp. ; Milnor Dzh., Stashef Dzh., Kharakteristicheskie klassy, Mir, M., 1979, 371 pp. | MR | Zbl | MR | Zbl

[8] Vasilev V. A., “Stabilnye kogomologii dopolnenii k diskriminantam osobennostei gladkikh funktsii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie rezultaty, 33, VINITI, M., 1988, 3–29 | MR

[9] Vassiliev V. A., Lagrange and Legendre characteristic classes, 2nd ed., Gordon Breach Sci. Publ., N.Y. etc., 1993, 265 pp.; готовится рус. пер. в изд-ве МЦНМО

[10] Vasilev V. A., “Geometricheskaya realizatsiya gomologii klassicheskikh grupp Li i kompleksy, $S$-dvoistvennye k flagovym mnogoobraziyam”, Algebra i analiz, 3:4 (1991), 113–120 | MR

[11] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, 98, American Mathematical Society, Providence, R.I., 1992 | MR

[12] Vassiliev V. A., “Topology of discriminants and their complements”, Proc. Intern. Congr. Math. (Zürich, 1994), Birkhäuser, Basel, 1995, 209–226 ; Tr. Mezhdunar. Kongr. Matematikov (Tsyurikh, 1994 g.), Mir, M., 1999 | MR | Zbl

[13] Vasilev V. A., Topologiya dopolnenii k diskriminantam, Fazis, M., 1997, 552 pp. | MR