Coincidence Theory: The Minimizing Problem
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 52-86

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide a short history of the main contributions about the problem of computing the minimal coincidence number $MC[f_1,f_2]$ where $(f_1,f_2)$ is a pair of maps between two topological spaces and where these maps can be homotopically deformed. The more recent contributions are treated in more detail, including some material not yet published.
@article{TM_1999_225_a4,
     author = {S. A. Bogatyi and D. L. Gon\c{c}alves and H. Zieschang},
     title = {Coincidence {Theory:} {The} {Minimizing} {Problem}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {52--86},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a4/}
}
TY  - JOUR
AU  - S. A. Bogatyi
AU  - D. L. Gonçalves
AU  - H. Zieschang
TI  - Coincidence Theory: The Minimizing Problem
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 52
EP  - 86
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a4/
LA  - ru
ID  - TM_1999_225_a4
ER  - 
%0 Journal Article
%A S. A. Bogatyi
%A D. L. Gonçalves
%A H. Zieschang
%T Coincidence Theory: The Minimizing Problem
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 52-86
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a4/
%G ru
%F TM_1999_225_a4
S. A. Bogatyi; D. L. Gonçalves; H. Zieschang. Coincidence Theory: The Minimizing Problem. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 52-86. http://geodesic.mathdoc.fr/item/TM_1999_225_a4/