The Morse--Novikov Theory of Circle-Valued Functions and Noncommutative Localization
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 381-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use noncommutative localization to construct a chain complex which counts the critical points of a circle-valued Morse function on a manifold, generalizing the Novikov complex. As a consequence we obtain new topological lower bounds on the minimum number of critical points of a circle-valued Morse function within a homotopy class, generalizing the Novikov inequalities.
@article{TM_1999_225_a24,
     author = {M. Farber and A. Ranicki},
     title = {The {Morse--Novikov} {Theory} of {Circle-Valued} {Functions} and {Noncommutative} {Localization}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {381--388},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a24/}
}
TY  - JOUR
AU  - M. Farber
AU  - A. Ranicki
TI  - The Morse--Novikov Theory of Circle-Valued Functions and Noncommutative Localization
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 381
EP  - 388
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a24/
LA  - en
ID  - TM_1999_225_a24
ER  - 
%0 Journal Article
%A M. Farber
%A A. Ranicki
%T The Morse--Novikov Theory of Circle-Valued Functions and Noncommutative Localization
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 381-388
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a24/
%G en
%F TM_1999_225_a24
M. Farber; A. Ranicki. The Morse--Novikov Theory of Circle-Valued Functions and Noncommutative Localization. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 381-388. http://geodesic.mathdoc.fr/item/TM_1999_225_a24/

[1] Cohn P. M., Free rings and their relations, Acad. Press, London, 1971 | MR

[2] Farber M., “Exactness of the Novikov inequalities”, Funct. Anal. Appl., 19 (1985), 40–48 | DOI | MR | Zbl

[3] Novikov S. P., “Gamiltonov formalizm i mnogomernyi analog teorii Morsa”, UMN, 37:5 (1982), 3–49 | MR | Zbl

[4] Pazhitnov A. V., “On the Novikov complex for rational Morse forms”, Ann. Fac. Sci. Toulouse, 4 (1995), 297–338 | MR | Zbl

[5] Pazhitnov A. V., Incidence coefficients in the Novikov complex for Morse forms: rationality and exponential growth properties, Preprint, 1996 ; arXiv: dg-ga/9604004 | Zbl

[6] Pazhitnov A. V., Simple homotopy type of Novikov complex for closed 1-forms and Lefschetz $\zeta$-function of the gradient flow, Preprint, 1997 ; arXiv: dg-ga/9706014 | Zbl