Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1999_225_a20, author = {A. K. Pogrebkov}, title = {Discrete {Schr\"odinger} {Equation} on {a~Finite} {Field} and {Associated} {Cellular} {Automaton}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {319--330}, publisher = {mathdoc}, volume = {225}, year = {1999}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a20/} }
TY - JOUR AU - A. K. Pogrebkov TI - Discrete Schr\"odinger Equation on a~Finite Field and Associated Cellular Automaton JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1999 SP - 319 EP - 330 VL - 225 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1999_225_a20/ LA - ru ID - TM_1999_225_a20 ER -
A. K. Pogrebkov. Discrete Schr\"odinger Equation on a~Finite Field and Associated Cellular Automaton. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 319-330. http://geodesic.mathdoc.fr/item/TM_1999_225_a20/
[1] D. Farmer, T. Toffoli, S. Wolfram (eds.), Cellular automata, North-Holland, Amsterdam, 1984 | MR | Zbl
[2] S. Wolfram (ed.), Theory and application of the cellular automata, World Sci., Singapore, 1986 | MR | Zbl
[3] P. Manneville, N. Boccara, G. Vichniac, R. Bidaux (eds.), Cellular automata and modelling of the complex systems, Springer, N. Y. etc., 1989 | Zbl
[4] N. Boccara, E. Goles, S. Martínez, P. Palmerini (eds.), Cellular automata and cooperative phenomena, Kluwer, Dordrecht, 1993
[5] Wolfram S., “Cellular automata in condensed matter physics”, Scaling phenomena in disordered systems, eds. R. Pynn, A. Skjeltorp, Plenum Press, N. Y., 1985
[6] Park J. K., Steiglitz K., Thurston W. P., “Soliton like behavior in automata”, Physica D, 19 (1986), 423–432 | DOI | MR | Zbl
[7] Papatheodorou T. S., Ablowitz M. J., Saridakis Y. G., “A rule for fast computation and analysis of soliton automata”, Stud. Appl. Math., 79 (1988), 173–184 | MR | Zbl
[8] Papatheodorou T. S., Fokas A. S., “Evolution theory, periodic particles, and solitons in cellular automata”, Stud. Appl. Math., 80 (1989), 165–182 | MR | Zbl
[9] Fokas A. S., Papadopoulou E. P., Saridakis Y. G., Ablowitz M. J., “Interaction of simple particles in soliton cellular automata”, Stud. Appl. Math., 81 (1989), 153–180 | MR | Zbl
[10] Fokas A. S., Papadopoulou E. P., Saridakis Y. G., “Coherent structures in cellular automata”, Phys. Lett. A, 147 (1990), 369–379 | DOI | MR
[11] Takahashi D., Satsuma J., “A soliton cellular automaton”, J. Phys. Soc. Japan, 59 (1990), 3514–3519 | DOI | MR
[12] Ablowitz M. J., Kaiser J. M., Takhtajan L. A., “Class of stable multistate time-reversible cellular automata with reach particle content”, Phys. Rev. A, 44 (1990), 6909–6912 | DOI
[13] Bruschi M., Santini P. M., Ragnisco O., “Integrable cellular automata”, Phys. Lett. A, 169 (1992), 151–160 | DOI | MR
[14] Bobenko A., Bordemann M., Gunn C., Pinkall U., “On two integrable cellular automata”, Communs Math. Phys., 158 (1993), 127–134 | DOI | MR | Zbl
[15] Takhtajan L. A., “Integrable cellular automata and AKNS hierarchy”, Symmetries and integrability of difference equations, CRM Proc. Lect. Notes, 9, eds. D. Levi, L. Vinet, P. Winternitz, Amer. Math. Soc., Providence, R. I., 1996, 371–375 | MR | Zbl
[16] Takahashi D., Matsukidaira J., “On discrete soliton equations related to cellular automata”, Phys. Lett. A, 209 (1995), 184–188 | DOI | MR | Zbl
[17] Ablovits M., Sigur Kh., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR
[18] Kac M., van Moerbeke P., “A complete solution of the periodic Toda problem”, Proc. Nat. Acad. Sci. USA, 72 (1974), 2879–2880 | DOI | MR
[19] Manakov S. V., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, ZhETF, 67 (1974), 543–555 | MR
[20] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov: Metod obratnoi zadachi rasseyaniya, Nauka, M., 1980 | MR
[21] Calogero F., Degasperis A., Spectral transform and solitons, North-Holland, Amsterdam, 1982 | MR | Zbl
[22] Takhtadzhyan L. A., Faddeev L. D., Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl