Discrete Analogs of the Darboux--Egorov Metrics
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 21-45

Voir la notice de l'article provenant de la source Math-Net.Ru

A discrete analog of the Darboux–Egorov metrics is constructed and the geometry of the corresponding lattices in a Euclidean space is shown to be described by the set of functions $h_i^{\pm}(u)$, $u\in\mathbb Z^n$. A discrete analog of the Lamé equations is determined, and it is shown that these equations are necessary and sufficient for the solutions to this analog to be the rotation coefficients of the Darboux–Egorov lattice up to a gauge transformation. A scheme for the construction of explicit solutions to the discrete Lamé equations in terms of the Riemann $\theta$-functions is presented.
@article{TM_1999_225_a2,
     author = {A. A. Akhmetshin and Yu. S. Vol'vovskii and I. M. Krichever},
     title = {Discrete {Analogs} of the {Darboux--Egorov} {Metrics}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {21--45},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a2/}
}
TY  - JOUR
AU  - A. A. Akhmetshin
AU  - Yu. S. Vol'vovskii
AU  - I. M. Krichever
TI  - Discrete Analogs of the Darboux--Egorov Metrics
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 21
EP  - 45
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a2/
LA  - ru
ID  - TM_1999_225_a2
ER  - 
%0 Journal Article
%A A. A. Akhmetshin
%A Yu. S. Vol'vovskii
%A I. M. Krichever
%T Discrete Analogs of the Darboux--Egorov Metrics
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 21-45
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a2/
%G ru
%F TM_1999_225_a2
A. A. Akhmetshin; Yu. S. Vol'vovskii; I. M. Krichever. Discrete Analogs of the Darboux--Egorov Metrics. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 21-45. http://geodesic.mathdoc.fr/item/TM_1999_225_a2/