Approximate Inverse Quantum Scattering at Fixed Energy in Dimension~2
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 301-318
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Schrödinger equation in dimension 2 we reconstruct the potential $v\in W^{N,1}_{\varepsilon}(\mathbb R^2)$, $\mathbb N\ni N\ge 3$, $\varepsilon>0$ ($N$-times smooth potential) from the scattering amplitude $f$ at fixed energy $E$ up to $O(E^{-(N-2)/2})$ in the uniform norm as $E\to+\infty$.
@article{TM_1999_225_a19,
author = {R. G. Novikov},
title = {Approximate {Inverse} {Quantum} {Scattering} at {Fixed} {Energy} in {Dimension~2}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {301--318},
publisher = {mathdoc},
volume = {225},
year = {1999},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a19/}
}
R. G. Novikov. Approximate Inverse Quantum Scattering at Fixed Energy in Dimension~2. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 301-318. http://geodesic.mathdoc.fr/item/TM_1999_225_a19/