Cobordism of Symplectic Manifolds and Asymptotic Expansions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 276-283

Voir la notice de l'article provenant de la source Math-Net.Ru

The cobordism ring $\mathcal B_*$ of symplectic manifolds defined by V. L. Ginzburg is isomorphic to the Pontrjagin ring of complex-oriented manifolds with free circle actions. This provides an interpretation of the formal group law of complex cobordism as a composition-law on certain asymptotic expansions.
@article{TM_1999_225_a17,
     author = {J. Morava},
     title = {Cobordism of {Symplectic} {Manifolds} and {Asymptotic} {Expansions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {276--283},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a17/}
}
TY  - JOUR
AU  - J. Morava
TI  - Cobordism of Symplectic Manifolds and Asymptotic Expansions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 276
EP  - 283
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a17/
LA  - en
ID  - TM_1999_225_a17
ER  - 
%0 Journal Article
%A J. Morava
%T Cobordism of Symplectic Manifolds and Asymptotic Expansions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 276-283
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a17/
%G en
%F TM_1999_225_a17
J. Morava. Cobordism of Symplectic Manifolds and Asymptotic Expansions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 276-283. http://geodesic.mathdoc.fr/item/TM_1999_225_a17/