Cobordism of Symplectic Manifolds and Asymptotic Expansions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 276-283.

Voir la notice de l'article provenant de la source Math-Net.Ru

The cobordism ring $\mathcal B_*$ of symplectic manifolds defined by V. L. Ginzburg is isomorphic to the Pontrjagin ring of complex-oriented manifolds with free circle actions. This provides an interpretation of the formal group law of complex cobordism as a composition-law on certain asymptotic expansions.
@article{TM_1999_225_a17,
     author = {J. Morava},
     title = {Cobordism of {Symplectic} {Manifolds} and {Asymptotic} {Expansions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {276--283},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a17/}
}
TY  - JOUR
AU  - J. Morava
TI  - Cobordism of Symplectic Manifolds and Asymptotic Expansions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 276
EP  - 283
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a17/
LA  - en
ID  - TM_1999_225_a17
ER  - 
%0 Journal Article
%A J. Morava
%T Cobordism of Symplectic Manifolds and Asymptotic Expansions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 276-283
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a17/
%G en
%F TM_1999_225_a17
J. Morava. Cobordism of Symplectic Manifolds and Asymptotic Expansions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 276-283. http://geodesic.mathdoc.fr/item/TM_1999_225_a17/

[1] Baker A., Some calculations with Milnor hypersurfaces and an application to Ginzburg's symplectic cobordism ring, Glasgow Univ. Math. Dep. Preprint 94/54

[2] Bukhshtaber V. M., “Kharakter Chzhenya–Dolda v teorii kobordizmov, I”, Mat. sb., 83 (1970), 575–595 | Zbl

[3] Berline N., Getzler E., Vergne M., Heat kernels and Dirac operators, Grundl. Math Wiss., 298, Springer-Verl., Berlin etc., 1992 | MR | Zbl

[4] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, 2nd ed., CRC Press, Boca Raton (FL), 1995 | MR | Zbl

[5] Ginzburg V. L., “Calculation of contact and symplectic cobordism groups”, Topology, 31 (1992), 767–773 | DOI | MR | Zbl

[6] Ginzburg V. L., Guillemin V., Karshon Y., “Cobordism theory and localization formulas for Hamiltonian group actions”, Intern. Math. Res. Not., 1996, 221–234 | DOI | MR | Zbl

[7] Glimm J., Jaffe A., Quantum mechanics: a functional integral point of view, Springer-Verl., Berlin, 1981 | MR | Zbl

[8] Guillemin V., Sternberg S., Symplectic techniques in physics, Cambridge Univ. Press, Cambridge, 1984 | MR

[9] Kontsevich M., Deformation quantization of Poisson manifolds, Preprint, 1997 ; arXiv:math.QA/~9709040 | MR

[10] Kórpas L., Uribe A., Quantization of symplectic cobordisms, Preprint. Univ. Michigan, 1999 ; http://www.math.lsa.umich.edu/~uribe/research.html | MR | Zbl

[11] Mathieu O., “The symplectic operad”, Functional analysis on the eve of 21st century, v. 1, Progr. Math., 131, eds. S. Gindikin et al., Birkhäuser, Boston etc., 1995, 223–244 | MR

[12] Narasimhan M. S., Ramanan S., “Existence of universal connections, I”, Amer. J. Math. 1961, 83, 563–572 ; “II”, 85 (1963), 223–231 | DOI | MR | Zbl | DOI | MR | Zbl

[13] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR, 31 (1967), 855–951 | Zbl

[14] Quillen D. G., “Elementary proofs of some results of cobordism theory using Steenrod operations”, Adv. Math., 7 (1971), 29–56 | DOI | MR | Zbl

[15] Ravenel D., Nilpotence and periodicity in stable homotopy theory, Ann. Math. Stud., 128, Princeton Univ. Press, Princeton, N. J., 1992 | MR | Zbl

[16] Ravenel D., Wilson W. S., “The Hopf ring for complex cobordism”, J. Pure and Appl. Algebra, 9 (1977), 241–280 | DOI | MR | Zbl