On Atypical Values and Local Monodromies of Meromorphic Functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 168-176.

Voir la notice de l'article provenant de la source Math-Net.Ru

A meromorphic function on a compact complex analytic manifold defines a $C^\infty$ locally trivial fibration over the complement to a finite set in the projective line $\mathbb{CP}^1$ – the bifurcation set. Loops around points of the bifurcation set give rise to corresponding monodromy transformations of this fibration. We show that the zeta-functions of these monodromy transformations can be expressed in local terms, namely, as integrals of zeta-functions of meromorphic germs with respect to the Euler characteristic. A particular case of meromorphic functions on the projective space $\mathbb{CP}^n$ are those defined by polynomial functions of $n$ variables. We describe some applications of this technique to polynomial functions.
@article{TM_1999_225_a10,
     author = {S. M. Gusein-Zade and I. Luengo and A. Melle-Hern\'andez},
     title = {On {Atypical} {Values} and {Local} {Monodromies} of {Meromorphic} {Functions}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {168--176},
     publisher = {mathdoc},
     volume = {225},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_225_a10/}
}
TY  - JOUR
AU  - S. M. Gusein-Zade
AU  - I. Luengo
AU  - A. Melle-Hernández
TI  - On Atypical Values and Local Monodromies of Meromorphic Functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 168
EP  - 176
VL  - 225
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_225_a10/
LA  - ru
ID  - TM_1999_225_a10
ER  - 
%0 Journal Article
%A S. M. Gusein-Zade
%A I. Luengo
%A A. Melle-Hernández
%T On Atypical Values and Local Monodromies of Meromorphic Functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 168-176
%V 225
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_225_a10/
%G ru
%F TM_1999_225_a10
S. M. Gusein-Zade; I. Luengo; A. Melle-Hernández. On Atypical Values and Local Monodromies of Meromorphic Functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Solitons, geometry, and topology: on the crossroads, Tome 225 (1999), pp. 168-176. http://geodesic.mathdoc.fr/item/TM_1999_225_a10/

[1] A'Campo N., “La fonction zêta d'une monodromie”, Comment. Math. Helv., 50 (1975), 233–248 | DOI | MR

[2] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii, t. 2, Nauka, M., 1984 | MR

[3] Artal-Bartolo E., Luengo I., Melle-Hernández A., Milnor number at infinity, topology and Newton boundary of a polynomial function, Preprint Univ. Complutense Madrid, 1997

[4] Gusein-Zade S. M., Luengo I., Melle-Hernández A., “Partial resolutions and the zeta-function of a singularity”, Comment. Math. Helv., 72 (1997), 244–256 | DOI | MR | Zbl

[5] Gusein-Zade S. M., Luengo I., Mele-Ernandez A., “Dzeta-funktsii rostkov meromorfnykh funktsii i diagramma Nyutona”, Funktsion. analiz i ego pril., 32:2 (1998), 26–35 | MR | Zbl

[6] Gusein-Zade S. M., Luengo I., Melle-Hernández A., On zeta-function of a polynomial at infinity, Preprint, 1998 | MR

[7] Pham F., “Vanishing homologies and the $n$ variable saddlepoint method”, Singularities, 2, Proc. Symp. Pure Math., 40, Amer. Math. Soc., Providence, R.I., 1983, 319–335 | MR

[8] Varchenko A. N., “Zeta function of monodromy and Newton's diagrams”, Invent. math., 37 (1976), 118–128 | DOI | MR

[9] Viro O. Ya., “Some integral calculus based on Euler characteristic”, Topology and geometry – Rohlin seminar, Lect. Notes Math., 1346, Springer, N.Y. etc., 1988, 127–138 | MR