To the Theory of Many-Person Differential Games
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 130-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear differential game of a group of pursuers and one evader is considered. Sufficient conditions for the solvability of a problem of pursuit are presented in the case when it is possible to split pursuers into the following three groups of players. For the players of the first, second, and third groups, the dynamic capabilities, respectively, coincide with, exceed, and are less than the dynamic capabilities of the evader. An algorithm for finding a control of pursuing players is described. A method for calculating the guaranteed time of visiting the terminal set from a given initial position is proposed. The results of calculation of a model example are presented.
@article{TM_1999_224_a7,
     author = {N. L. Grigorenko},
     title = {To the {Theory} of {Many-Person} {Differential} {Games}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {130--138},
     publisher = {mathdoc},
     volume = {224},
     year = {1999},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1999_224_a7/}
}
TY  - JOUR
AU  - N. L. Grigorenko
TI  - To the Theory of Many-Person Differential Games
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1999
SP  - 130
EP  - 138
VL  - 224
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1999_224_a7/
LA  - ru
ID  - TM_1999_224_a7
ER  - 
%0 Journal Article
%A N. L. Grigorenko
%T To the Theory of Many-Person Differential Games
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1999
%P 130-138
%V 224
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1999_224_a7/
%G ru
%F TM_1999_224_a7
N. L. Grigorenko. To the Theory of Many-Person Differential Games. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebra. Topology. Differential equations and their applications, Tome 224 (1999), pp. 130-138. http://geodesic.mathdoc.fr/item/TM_1999_224_a7/

[1] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Mat. sb. Nov. ser., 112:3 (1980), 307–330 | MR | Zbl

[2] Pontryagin L. S., Mischenko E. F., “Zadacha ob uklonenii ot vstrechi v lineinykh differentsialnykh igrakh”, Differents. uravneniya, 7:3 (1971), 436–445 | Zbl

[3] Mischenko E. F., Nikolskii M. S., Satimov N. Yu., “Zadacha ukloneniya ot vstrechi v differentsialnykh igrakh mnogikh lits”, Tr. MIAN, 143, 1977, 105–128 | MR | Zbl

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[5] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[6] Grigorenko N. L., Matematicheskie metody upravleniya neskolkimi dinamicheskimi protsessami, Izd-vo MGU, M., 1990

[7] Pshenichnyi B. N., Ostapenko B. B., Differentsialnye igry, Nauk. dumka, Kiev, 1992 | MR

[8] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992

[9] Filippov A. F., “O nekotorykh voprosakh teorii optimalnogo regulirovaniya”, Vestn. MGU. Matematika. Mekhanika, 1959, no. 2, 34–41

[10] Grigorenko N. L., Kiselev Yu. N., Orlov M. V., Ryabov A. Yu., Alfa-programmnaya sistema dlya issledovaniya upravlyaemykh dinamicheskikh sistem na personalnom kompyutere, Izd-vo MGU, M., 1994, 1–79