Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Contemporary problems of continuum mechanics, Tome 223 (1998), pp. 181-186
Voir la notice de l'article provenant de la source Math-Net.Ru
Finite-dimensional systems with viscous friction are studied in the case when the Rayleigh function modeling this friction is proportional to the kinetic energy. Hydrodynamic analogies are presented for these systems.
@article{TM_1998_223_a23,
author = {V. V. Kozlov},
title = {Hydrodynamic {Theory} of {a~Class} of {Finite-Dimensional} {Dissipative} {Systems}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {181--186},
publisher = {mathdoc},
volume = {223},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1998_223_a23/}
}
TY - JOUR AU - V. V. Kozlov TI - Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1998 SP - 181 EP - 186 VL - 223 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1998_223_a23/ LA - ru ID - TM_1998_223_a23 ER -
V. V. Kozlov. Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Contemporary problems of continuum mechanics, Tome 223 (1998), pp. 181-186. http://geodesic.mathdoc.fr/item/TM_1998_223_a23/