Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Contemporary problems of continuum mechanics, Tome 223 (1998), pp. 181-186.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite-dimensional systems with viscous friction are studied in the case when the Rayleigh function modeling this friction is proportional to the kinetic energy. Hydrodynamic analogies are presented for these systems.
@article{TM_1998_223_a23,
     author = {V. V. Kozlov},
     title = {Hydrodynamic {Theory} of {a~Class} of {Finite-Dimensional} {Dissipative} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {181--186},
     publisher = {mathdoc},
     volume = {223},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1998_223_a23/}
}
TY  - JOUR
AU  - V. V. Kozlov
TI  - Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1998
SP  - 181
EP  - 186
VL  - 223
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1998_223_a23/
LA  - ru
ID  - TM_1998_223_a23
ER  - 
%0 Journal Article
%A V. V. Kozlov
%T Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1998
%P 181-186
%V 223
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1998_223_a23/
%G ru
%F TM_1998_223_a23
V. V. Kozlov. Hydrodynamic Theory of a~Class of Finite-Dimensional Dissipative Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Contemporary problems of continuum mechanics, Tome 223 (1998), pp. 181-186. http://geodesic.mathdoc.fr/item/TM_1998_223_a23/