Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Local and global problems of singularity theory, Tome 221 (1998), pp. 257-270.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1998_221_a15,
     author = {O. M. Myasnichenko},
     title = {Symplectic {Morse} {Lemma} and {Trajectories} of {Hamiltonian} {Systems} {Arriving} at the {Boundary} of {Possible} {Motion} {Domain}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {257--270},
     publisher = {mathdoc},
     volume = {221},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1998_221_a15/}
}
TY  - JOUR
AU  - O. M. Myasnichenko
TI  - Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1998
SP  - 257
EP  - 270
VL  - 221
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1998_221_a15/
LA  - ru
ID  - TM_1998_221_a15
ER  - 
%0 Journal Article
%A O. M. Myasnichenko
%T Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1998
%P 257-270
%V 221
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1998_221_a15/
%G ru
%F TM_1998_221_a15
O. M. Myasnichenko. Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Local and global problems of singularity theory, Tome 221 (1998), pp. 257-270. http://geodesic.mathdoc.fr/item/TM_1998_221_a15/