Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1998_221_a15, author = {O. M. Myasnichenko}, title = {Symplectic {Morse} {Lemma} and {Trajectories} of {Hamiltonian} {Systems} {Arriving} at the {Boundary} of {Possible} {Motion} {Domain}}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {257--270}, publisher = {mathdoc}, volume = {221}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1998_221_a15/} }
TY - JOUR AU - O. M. Myasnichenko TI - Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1998 SP - 257 EP - 270 VL - 221 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1998_221_a15/ LA - ru ID - TM_1998_221_a15 ER -
%0 Journal Article %A O. M. Myasnichenko %T Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1998 %P 257-270 %V 221 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1998_221_a15/ %G ru %F TM_1998_221_a15
O. M. Myasnichenko. Symplectic Morse Lemma and Trajectories of Hamiltonian Systems Arriving at the Boundary of Possible Motion Domain. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Local and global problems of singularity theory, Tome 221 (1998), pp. 257-270. http://geodesic.mathdoc.fr/item/TM_1998_221_a15/