An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 249-257.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1997_219_a16,
     author = {S. V. Konyagin and S. B. Stechkin},
     title = {An {Estimate} of the {Number} of {Solutions} of the $n$th {Degree} {Congruence} in {One} {Variable}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {249--257},
     publisher = {mathdoc},
     volume = {219},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_219_a16/}
}
TY  - JOUR
AU  - S. V. Konyagin
AU  - S. B. Stechkin
TI  - An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 249
EP  - 257
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1997_219_a16/
LA  - ru
ID  - TM_1997_219_a16
ER  - 
%0 Journal Article
%A S. V. Konyagin
%A S. B. Stechkin
%T An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 249-257
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1997_219_a16/
%G ru
%F TM_1997_219_a16
S. V. Konyagin; S. B. Stechkin. An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 249-257. http://geodesic.mathdoc.fr/item/TM_1997_219_a16/