An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 249-257
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1997_219_a16,
author = {S. V. Konyagin and S. B. Stechkin},
title = {An {Estimate} of the {Number} of {Solutions} of the $n$th {Degree} {Congruence} in {One} {Variable}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {249--257},
year = {1997},
volume = {219},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1997_219_a16/}
}
TY - JOUR AU - S. V. Konyagin AU - S. B. Stechkin TI - An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1997 SP - 249 EP - 257 VL - 219 UR - http://geodesic.mathdoc.fr/item/TM_1997_219_a16/ LA - ru ID - TM_1997_219_a16 ER -
%0 Journal Article %A S. V. Konyagin %A S. B. Stechkin %T An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1997 %P 249-257 %V 219 %U http://geodesic.mathdoc.fr/item/TM_1997_219_a16/ %G ru %F TM_1997_219_a16
S. V. Konyagin; S. B. Stechkin. An Estimate of the Number of Solutions of the $n$th Degree Congruence in One Variable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 249-257. http://geodesic.mathdoc.fr/item/TM_1997_219_a16/