One More Generalization of Bessel's Inequality and Riesz--Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 211-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1997_219_a13,
     author = {V. A. Il'in},
     title = {One {More} {Generalization} of {Bessel's} {Inequality} and {Riesz--Fischer} {Theorem} for {Fourier} {Series} with {Respect} to {Uniformly} {Bounded} {Orthonormal} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--219},
     publisher = {mathdoc},
     volume = {219},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_219_a13/}
}
TY  - JOUR
AU  - V. A. Il'in
TI  - One More Generalization of Bessel's Inequality and Riesz--Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 211
EP  - 219
VL  - 219
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1997_219_a13/
LA  - ru
ID  - TM_1997_219_a13
ER  - 
%0 Journal Article
%A V. A. Il'in
%T One More Generalization of Bessel's Inequality and Riesz--Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 211-219
%V 219
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1997_219_a13/
%G ru
%F TM_1997_219_a13
V. A. Il'in. One More Generalization of Bessel's Inequality and Riesz--Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 211-219. http://geodesic.mathdoc.fr/item/TM_1997_219_a13/