One More Generalization of Bessel's Inequality and Riesz–Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 211-219 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1997_219_a13,
     author = {V. A. Il'in},
     title = {One {More} {Generalization} of {Bessel's} {Inequality} and {Riesz{\textendash}Fischer} {Theorem} for {Fourier} {Series} with {Respect} to {Uniformly} {Bounded} {Orthonormal} {Systems}},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {211--219},
     year = {1997},
     volume = {219},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_219_a13/}
}
TY  - JOUR
AU  - V. A. Il'in
TI  - One More Generalization of Bessel's Inequality and Riesz–Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 211
EP  - 219
VL  - 219
UR  - http://geodesic.mathdoc.fr/item/TM_1997_219_a13/
LA  - ru
ID  - TM_1997_219_a13
ER  - 
%0 Journal Article
%A V. A. Il'in
%T One More Generalization of Bessel's Inequality and Riesz–Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 211-219
%V 219
%U http://geodesic.mathdoc.fr/item/TM_1997_219_a13/
%G ru
%F TM_1997_219_a13
V. A. Il'in. One More Generalization of Bessel's Inequality and Riesz–Fischer Theorem for Fourier Series with Respect to Uniformly Bounded Orthonormal Systems. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation theory. Harmonic analysis, Tome 219 (1997), pp. 211-219. http://geodesic.mathdoc.fr/item/TM_1997_219_a13/