Convexly hyperbolic flows on unit tangent bundles of surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 373-383
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce a family of vector fields (convexly hyperbolic vector fields) on the unit tangent bundle of a compact surface of constant negative curvature, which generate flows that are semiconjugate to the geodesic flow. This $C^0$ open condition generalizes and simplifies the sufficient conditions obtained by Ratner [8]. We apply it to the class of tangential flows (“second order differential equations”).
@article{TM_1997_216_a25,
author = {M. P. Wojtkowski},
title = {Convexly hyperbolic flows on unit tangent bundles of surfaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {373--383},
year = {1997},
volume = {216},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_1997_216_a25/}
}
M. P. Wojtkowski. Convexly hyperbolic flows on unit tangent bundles of surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 373-383. http://geodesic.mathdoc.fr/item/TM_1997_216_a25/