Convexly hyperbolic flows on unit tangent bundles of surfaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 373-383.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a family of vector fields (convexly hyperbolic vector fields) on the unit tangent bundle of a compact surface of constant negative curvature, which generate flows that are semiconjugate to the geodesic flow. This $C^0$ open condition generalizes and simplifies the sufficient conditions obtained by Ratner [8]. We apply it to the class of tangential flows (“second order differential equations”).
@article{TM_1997_216_a25,
     author = {M. P. Wojtkowski},
     title = {Convexly hyperbolic flows on unit tangent bundles of surfaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {373--383},
     publisher = {mathdoc},
     volume = {216},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_216_a25/}
}
TY  - JOUR
AU  - M. P. Wojtkowski
TI  - Convexly hyperbolic flows on unit tangent bundles of surfaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 373
EP  - 383
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1997_216_a25/
LA  - en
ID  - TM_1997_216_a25
ER  - 
%0 Journal Article
%A M. P. Wojtkowski
%T Convexly hyperbolic flows on unit tangent bundles of surfaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 373-383
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1997_216_a25/
%G en
%F TM_1997_216_a25
M. P. Wojtkowski. Convexly hyperbolic flows on unit tangent bundles of surfaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 373-383. http://geodesic.mathdoc.fr/item/TM_1997_216_a25/