Mixing for finite systems of coupled tent maps
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 320-326.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a finite system of coupled mixing tent maps has a unique absolutely continuous invariant measure and is exact with respect to this measure provided the coupling strength does not exceed a certain value $\varepsilon_{\operatorname{uni}}$ which is independent of the size of the system.
@article{TM_1997_216_a19,
     author = {G. Keller},
     title = {Mixing for finite systems of coupled tent maps},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {320--326},
     publisher = {mathdoc},
     volume = {216},
     year = {1997},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_216_a19/}
}
TY  - JOUR
AU  - G. Keller
TI  - Mixing for finite systems of coupled tent maps
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 320
EP  - 326
VL  - 216
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1997_216_a19/
LA  - en
ID  - TM_1997_216_a19
ER  - 
%0 Journal Article
%A G. Keller
%T Mixing for finite systems of coupled tent maps
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 320-326
%V 216
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1997_216_a19/
%G en
%F TM_1997_216_a19
G. Keller. Mixing for finite systems of coupled tent maps. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 320-326. http://geodesic.mathdoc.fr/item/TM_1997_216_a19/