Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 292-319
Voir la notice de l'article provenant de la source Math-Net.Ru
We show that most homogeneous Anosov actions of higher rank Abelian groups are locally $C^\infty$-rigid (up
to an automorphism). This result is the main part in the proof of local $C^\infty$-rigidity for two very different types of algebraic actions of irreducible lattices in higher rank semisimple Lie groups: (i) the Anosov actions by automorphisms of tori and nilmanifolds, and (ii) the actions of cocompact lattices on Furstenberg boundaries, in particular, projective spaces. The main new technical ingredient in the proofs is the use of a proper “onstationary” generalization of the classical theory of normal forms for local contractions.
@article{TM_1997_216_a18,
author = {A. Katok and R. J. Spatzier},
title = {Differential rigidity of {Anosov} actions of higher rank abelian groups and algebraic lattice actions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {292--319},
publisher = {mathdoc},
volume = {216},
year = {1997},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_1997_216_a18/}
}
TY - JOUR AU - A. Katok AU - R. J. Spatzier TI - Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1997 SP - 292 EP - 319 VL - 216 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1997_216_a18/ LA - en ID - TM_1997_216_a18 ER -
%0 Journal Article %A A. Katok %A R. J. Spatzier %T Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1997 %P 292-319 %V 216 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1997_216_a18/ %G en %F TM_1997_216_a18
A. Katok; R. J. Spatzier. Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Dynamical systems and related topics, Tome 216 (1997), pp. 292-319. http://geodesic.mathdoc.fr/item/TM_1997_216_a18/