On approximate conformal mapping of a doubly connected polygon onto a annulus by the block method
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 17, Tome 214 (1997), pp. 145-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1997_214_a6,
     author = {E. A. Volkov},
     title = {On approximate conformal mapping of a~doubly connected polygon onto a~annulus by the block method},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {145--163},
     year = {1997},
     volume = {214},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1997_214_a6/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - On approximate conformal mapping of a doubly connected polygon onto a annulus by the block method
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1997
SP  - 145
EP  - 163
VL  - 214
UR  - http://geodesic.mathdoc.fr/item/TM_1997_214_a6/
LA  - ru
ID  - TM_1997_214_a6
ER  - 
%0 Journal Article
%A E. A. Volkov
%T On approximate conformal mapping of a doubly connected polygon onto a annulus by the block method
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1997
%P 145-163
%V 214
%U http://geodesic.mathdoc.fr/item/TM_1997_214_a6/
%G ru
%F TM_1997_214_a6
E. A. Volkov. On approximate conformal mapping of a doubly connected polygon onto a annulus by the block method. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 17, Tome 214 (1997), pp. 145-163. http://geodesic.mathdoc.fr/item/TM_1997_214_a6/