Multipliers for Laplace hyperfunctions – a justification of Heaviside's rules
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected problems of mathematical physics and analysis, Tome 203 (1994), pp. 323-333
Cet article a éte moissonné depuis la source Math-Net.Ru
Holomorphic functions of exponential type on an open sector containing $[a,\infty]$ are multipliers for Laplace hyperfunctions with support in $[a,\infty]$. Their action in the Laplace images is realized as convolutions in the complex domain. In the special case of the exponential $e^{\omega x}$ and the coordinate $x$ it is the shift by $\omega$ and the derivation $-d/d\lambda$ respectively. Bessel's equation is treated as an example.
@article{TM_1994_203_a28,
author = {H. Komatsu},
title = {Multipliers for {Laplace} hyperfunctions~{\textendash} a~justification of {Heaviside's} rules},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {323--333},
year = {1994},
volume = {203},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TM_1994_203_a28/}
}
H. Komatsu. Multipliers for Laplace hyperfunctions – a justification of Heaviside's rules. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Selected problems of mathematical physics and analysis, Tome 203 (1994), pp. 323-333. http://geodesic.mathdoc.fr/item/TM_1994_203_a28/