On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Proceedings of the All-Union school on the theory of functions, Tome 198 (1992), pp. 21-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1992_198_a1,
     author = {M.-B. Babayev},
     title = {On the order of approximation of {Sobolev} class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {21--40},
     publisher = {mathdoc},
     volume = {198},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1992_198_a1/}
}
TY  - JOUR
AU  - M.-B. Babayev
TI  - On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1992
SP  - 21
EP  - 40
VL  - 198
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1992_198_a1/
LA  - ru
ID  - TM_1992_198_a1
ER  - 
%0 Journal Article
%A M.-B. Babayev
%T On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1992
%P 21-40
%V 198
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1992_198_a1/
%G ru
%F TM_1992_198_a1
M.-B. Babayev. On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Proceedings of the All-Union school on the theory of functions, Tome 198 (1992), pp. 21-40. http://geodesic.mathdoc.fr/item/TM_1992_198_a1/