Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1992_198_a1, author = {M.-B. Babayev}, title = {On the order of approximation of {Sobolev} class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {21--40}, publisher = {mathdoc}, volume = {198}, year = {1992}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1992_198_a1/} }
TY - JOUR AU - M.-B. Babayev TI - On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1992 SP - 21 EP - 40 VL - 198 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1992_198_a1/ LA - ru ID - TM_1992_198_a1 ER -
%0 Journal Article %A M.-B. Babayev %T On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$ %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1992 %P 21-40 %V 198 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1992_198_a1/ %G ru %F TM_1992_198_a1
M.-B. Babayev. On the order of approximation of Sobolev class $W_q^r$ by bilinear forms in $L_p$ for $1\le q\le2\le p\le\infty$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Proceedings of the All-Union school on the theory of functions, Tome 198 (1992), pp. 21-40. http://geodesic.mathdoc.fr/item/TM_1992_198_a1/