$\beta N$ under the negation of $CH$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and its applications, Tome 193 (1992), pp. 137-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1992_193_a25,
     author = {V. I. Malykhin},
     title = {$\beta N$ under the negation of $CH$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {137--141},
     publisher = {mathdoc},
     volume = {193},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1992_193_a25/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - $\beta N$ under the negation of $CH$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1992
SP  - 137
EP  - 141
VL  - 193
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1992_193_a25/
LA  - ru
ID  - TM_1992_193_a25
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T $\beta N$ under the negation of $CH$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1992
%P 137-141
%V 193
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1992_193_a25/
%G ru
%F TM_1992_193_a25
V. I. Malykhin. $\beta N$ under the negation of $CH$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Topology and its applications, Tome 193 (1992), pp. 137-141. http://geodesic.mathdoc.fr/item/TM_1992_193_a25/